• Title/Summary/Keyword: 비전 센서

Search Result 292, Processing Time 0.031 seconds

A Moving Path Control of an Automatic Guided Vehicle Using Relative Distance Fingerprinting (상대거리 지문 정보를 이용한 무인이송차량의 주행 경로 제어)

  • Hong, Youn Sik;Kim, Da Jung;Hong, Sang Hyun
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.2 no.10
    • /
    • pp.427-436
    • /
    • 2013
  • In this paper, a method of moving path control of an automatic guided vehicle in an indoor environment through recognition of marker images using vision sensors is presented. The existing AGV moving control system using infrared-ray sensors and landmarks have faced at two critical problems. Since there are many windows in a crematorium, they are going to let in too much sunlight in the main hall which is the moving area of AGVs. Sunlight affects the correct recognition of landmarks due to refraction and/or reflection of sunlight. The second one is that a crematorium has a narrow indoor environment compared to typical industrial fields. Particularly when an AVG changes its direction to enter the designated furnace the information provided by guided sensors cannot be utilized to estimate its location because the rotating space is too narrow to get them. To resolve the occurrences of such circumstances that cannot access sensing data in a WSN environment, a relative distance from marker to an AGV will be used as fingerprinting used for location estimation. Compared to the existing fingerprinting method which uses RSS, our proposed method may result in a higher reliable estimation of location. Our experimental results show that the proposed method proves the correctness and applicability. In addition, our proposed approach will be applied to the AGV system in the crematorium so that it can transport a dead body safely from the loading place to its rightful destination.

Interaction Augmented Reality System using a Hand Motion (손동작을 이용한 상호작용 증강현실 시스템)

  • Choi, Kwang-Woon;Jung, Da-Un;Lee, Suk-Han;Choi, Jong-Soo
    • Journal of Korea Multimedia Society
    • /
    • v.15 no.4
    • /
    • pp.425-438
    • /
    • 2012
  • In this paper, We propose Augmented Reality (AR) System for the interaction between user's hand motion and virtual object motion based on computer vision. The previous AR system provides inconvenience to user because the users have to control the marker and the sensor like a tracker. We solved the problem through hand motion and provide the convenience to the user. Also the motion of virtual object using a physical phenomenon gives a reality. The proposed system obtains geometrical information by the marker and hand. The system environments like virtual space of moving virtual ball and bricks are made by using the geometrical information and user's hand motion is obtained from the hand's information with extracted feature point through the taping hand. And it registers a virtual plane stably by getting movement of the feature points. The movement of the virtual ball basically is parabolic motion with a parabolic equation. When the collision occurs either the planes or the bricks, we show movement of the virtual ball with ball position and normal vector of plane and the ball position is faulted. So we showed corrected ball position through experiment. and we proved that this system can replaced the marker system to compare to jitter of augmented virtual object and progress speed with it.

A Block based 3D Map for Recognizing Three Dimensional Spaces (3차원 공간의 인식을 위한 블록기반 3D맵)

  • Yi, Jong-Su;Kim, Jun-Seong
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.49 no.4
    • /
    • pp.89-96
    • /
    • 2012
  • A 3D map provides useful information for intelligent services. Traditional 3D maps, however, consist of a raw image data and are not suitable for real-time applications. In this paper, we propose the Block-based 3D map, that represents three dimensional spaces in a collection of square blocks. The Block_based 3D map has two major variables: an object ratio and a block size. The object ratio is defined as the proportion of object pixels to space pixels in a block and determines the type of the block. The block size is defined as the number of pixels of the side of a block and determines the size of the block. Experiments show the advantage of the Block-based 3D map in reducing noise, and in saving the amount of processing data. With the block size of $40{\times}40$ and the object ratio of 30% to 50% we can get the most matched Block-based 3D map for the $320{\times}240$ depthmap. The Block-based 3D map provides useful information, that can produce a variety of new services with high added value in intelligent environments.

IoT Based Intelligent Position and Posture Control of Home Wellness Robots (홈 웰니스 로봇의 사물인터넷 기반 지능형 자기 위치 및 자세 제어)

  • Lee, Byoungsu;Hyun, Chang-Ho;Kim, Seungwoo
    • Journal of IKEEE
    • /
    • v.18 no.4
    • /
    • pp.636-644
    • /
    • 2014
  • This paper is to technically implement the sensing platform for Home-Wellness Robot. First, self-localization technique is based on a smart home and object in a home environment, and IOT(Internet of Thing) between Home Wellness Robots. RF tag is set in a smart home and the absolute coordinate information is acquired by a object included RF reader. Then bluetooth communication between object and home wellness robot provides the absolute coordinate information to home wellness robot. After that, the relative coordinate of home wellness robot is found and self-localization through a stereo camera in a home wellness robot. Second, this paper proposed fuzzy control methode based on a vision sensor for approach object of home wellness robot. Based on a stereo camera equipped with face of home wellness robot, depth information to the object is extracted. Then figure out the angle difference between the object and home wellness robot by calculating a warped angle based on the center of the image. The obtained information is written Look-Up table and makes the attitude control for approaching object. Through the experimental with home wellness robot and the smart home environment, confirm performance about the proposed self-localization and posture control method respectively.

Design and Implementation of the Stop line and Crosswalk Recognition Algorithm for Autonomous UGV (자율 주행 UGV를 위한 정지선과 횡단보도 인식 알고리즘 설계 및 구현)

  • Lee, Jae Hwan;Yoon, Heebyung
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.3
    • /
    • pp.271-278
    • /
    • 2014
  • In spite of that stop line and crosswalk should be aware of the most basic objects in transportation system, its features extracted are very limited. In addition to image-based recognition technology, laser and RF, GPS/INS recognition technology, it is difficult to recognize. For this reason, the limited research in this area has been done. In this paper, the algorithm to recognize the stop line and crosswalk is designed and implemented using image-based recognition technology with the images input through a vision sensor. This algorithm consists of three functions.; One is to select the area, in advance, needed for feature extraction in order to speed up the data processing, 'Region of Interest', another is to process the images only that white color is detected more than a certain proportion in order to remove the unnecessary operation, 'Color Pattern Inspection', the other is 'Feature Extraction and Recognition', which is to extract the edge features and compare this to the previously-modeled one to identify the stop line and crosswalk. For this, especially by using case based feature comparison algorithm, it can identify either both stop line and crosswalk exist or just one exists. Also the proposed algorithm is to develop existing researches by comparing and analysing effect of in-vehicle camera installation and changes in recognition rate of distance estimation and various constraints such as backlight and shadow.

The analysis of Photovoltaic Power using Terrain Data based on LiDAR Surveying and Weather Data Measurement System (LiDAR 측량 기반의 지형자료와 기상 데이터 관측시스템을 이용한 태양광 발전량 분석)

  • Lee, Geun-Sang;Lee, Jong-Jo
    • Journal of Cadastre & Land InformatiX
    • /
    • v.49 no.1
    • /
    • pp.17-27
    • /
    • 2019
  • In this study, we conducted a study to predict the photovoltaic power by constructing the sensor based meteorological data observation system and the accurate terrain data obtained by using LiDAR surveying. The average sunshine hours in 2018 is 4.53 hours and the photovoltaic power is 2,305 MWh. In order to analyze the effect of photovoltaic power on the installation angle of solar modules, we installed module installation angle at $10^{\circ}$ intervals. As a result, the generation time was 4.24 hours at the module arrangement angle of $30^{\circ}$, and the daily power generation and the monthly power generation were the highest, 3.37 MWh and 102.47 MWh, respectively. Therefore, when the module arrangement angle is set to $30^{\circ}$, the generation efficiency is increased by about 4.8% compared with the module angle of $50^{\circ}$. As a result of analyzing the influence of the seasonal photovoltaic power by the installation angle of the solar module, it was found that the photovoltaic power was high in the range of $40^{\circ}{\sim}50^{\circ}$, where the module angle was large from November to February when the weather was cold. From March to October, it was found that the photovoltaic power amount is $10^{\circ}{\sim}30^{\circ}$ with small module angle.

Development of Noise and AI-based Pavement Condition Rating Evaluation System (소음도·인공지능 기반 포장상태등급 평가시스템 개발)

  • Han, Dae-Seok;Kim, Young-Rok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.1
    • /
    • pp.1-8
    • /
    • 2021
  • This study developed low-cost and high-efficiency pavement condition monitoring technology to produce the key information required for pavement management. A noise and artificial intelligence-based monitoring system was devised to compensate for the shortcomings of existing high-end equipment that relies on visual information and high-end sensors. From idea establishment to system development, functional definition, information flow, architecture design, and finally, on-site field evaluations were carried out. As a result, confidence in the high level of artificial intelligence evaluation was secured. In addition, hardware and software elements and well-organized guidelines on system utilization were developed. The on-site evaluation process confirmed that non-experts could easily and quickly investigate and visualized the data. The evaluation results could support the management works of road managers. Furthermore, it could improve the completeness of the technologies, such as prior discriminating techniques for external conditions that are not considered in AI learning, system simplification, and variable speed response techniques. This paper presents a new paradigm for pavement monitoring technology that has lasted since the 1960s.

Human Skeleton Keypoints based Fall Detection using GRU (PoseNet과 GRU를 이용한 Skeleton Keypoints 기반 낙상 감지)

  • Kang, Yoon Kyu;Kang, Hee Yong;Weon, Dal Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.2
    • /
    • pp.127-133
    • /
    • 2021
  • A recent study of people physically falling focused on analyzing the motions of the falls using a recurrent neural network (RNN) and a deep learning approach to get good results from detecting 2D human poses from a single color image. In this paper, we investigate a detection method for estimating the position of the head and shoulder keypoints and the acceleration of positional change using the skeletal keypoints information extracted using PoseNet from an image obtained with a low-cost 2D RGB camera, increasing the accuracy of judgments about the falls. In particular, we propose a fall detection method based on the characteristics of post-fall posture in the fall motion-analysis method. A public data set was used to extract human skeletal features, and as a result of an experiment to find a feature extraction method that can achieve high classification accuracy, the proposed method showed a 99.8% success rate in detecting falls more effectively than a conventional, primitive skeletal data-use method.

Introduction to the Technology of Digital Groundwater (Digital Groundwater의 기술 소개)

  • Hyeon-Sik Kim
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.10-10
    • /
    • 2023
  • 본질적으로 복잡하고 다양한 특성을 가지는 우리나라(도시, 농어촌, 도서산간, 섬 등)의 물 공급 시스템은 생활수준의 향상, 기후변화 및 가뭄위기, 소비환경 중심의 요구와 한정된 수자원을 잘 활용하기 위한 운영 및 관리가 매우 복잡하다. 이로 인한 수자원 고갈과 가뭄위기 등에 관련한 대책 및 방안으로 대체수자원인 지하수 활용방안들이 제시되고 있다. 따라서, 물 관리 시스템과 관련한 디지털 기술은 오늘날 플랫폼과 디지털 트윈의 도입을 통해 네트워크와 가상현실 세계의 연결이 통합되어진 4차 산업혁명 사업이 현실화되고 있다. 물 관리 시스템에 사용된 새로운 디지털 기술 "BDA(Big Data Analytics), CPS(Cyber Physical System), IoT(Internet of Things), CC(Cloud Computing), AI(Artificial Intelligence)" 등의 성장이 증가함에 따라 가뭄대응 위기와 도시 지하수 물 순환 시스템 운영이 증가하는 소비자 중심의 수요를 충족시키기 위해서는 지속가능한 지하수 공급을 효과적으로 관리되어야 한다. 4차 산업혁명과 관련한 기술성장이 증가함으로 인한 물 부문은 시스템의 지속가능성을 향상시키기 위해 전체 디지털화 단계로 이동하고 있다. 이러한 디지털 전환의 핵심은 데이터에 관한 것이며, 이를 활용하여 가치 창출을 위해서 "Digital Groundwater Technology/Twin(DGT)"를 극대화하는 방식으로 제고해야 한다. 현재 당면하고 있는 기후위기에 따른 가뭄, 홍수, 녹조, 탁수, 대체수자원 등의 수자원 재해에 대한 다양한 대응 방안과 수자원 확보 기술이 논의되고 있다. 이에 따른 "물 순환 시스템"의 이해와 함께 문제해결 방안도출을 위하여 이번 "기획 세션"에서는 지하수 수량 및 수질, 정수, 모니터링, 모델링, 운영/관리 등의 수자원 데이터의 플랫폼 동시성 구축으로부터 역동적인 "DGT"을 통한 디지털 트윈화하여, 지표수-토양-지하수 분야의 특화된 연직 프로파일링 관측기술을 다각도로 모색하고자 한다. "Digital Groundwater(DG)"는 지하수의 물 순환, 수량 및 수질 관리, 지표수-지하수 순환 및 모니터링, 지하수 예측 모델링 통합연계를 위해 지하수 플랫폼 동시성, ChatGPT, CPS 및 DT 등의 복합 디지털화 단계로 나가고 있다. 복잡한 지하환경의 이해와 관리 및 보존을 위한 지하수 네트워크에서 수량과 수질 데이터를 수집하기 위한 스마트 지하수 관측기술 개발은 큰 도전이다. 스마트 지하수 관측기술은 BD분석, AI 및 클라우드 컴퓨팅 등의 디지털 기술에 필요한 획득된 데이터 분석에 사용되는 알고리즘의 복잡성과 데이터 품질에 따라 영향을 미칠 수 있기 때문이다. "DG"는 지하수의 정보화 및 네트워크 운영관리 자동화, 지능화 등을 위한 디지털 도구를 활용함으로써 지표수-토양층-지하수 네트워크 통합관리에 대한 비전을 만들 수 있다. 또한, DGT는 지하수 관측센서의 1차원 데이터 융합을 이용한 지하수 플랫폼 동시성과 디지털 트윈을 연계할 수 있다.

  • PDF

Trends in the use of big data and artificial intelligence in the sports field (스포츠 현장에서의 빅데이터와 인공지능 활용 동향)

  • Seungae Kang
    • Convergence Security Journal
    • /
    • v.22 no.2
    • /
    • pp.115-120
    • /
    • 2022
  • This study analyzed the recent trends in the sports environment to which big data and AI technologies, which are representative technologies of the 4th Industrial Revolution, and approached them from the perspective of convergence of big data and AI technologies in the sports field. And the results are as follows. First, it is being used for player and game data analysis and team strategy establishment and operation. Second, by combining big data collected using GPS, wearable equipment, and IoT with artificial intelligence technology, scientific physical training for each player is possible through user individual motion analysis, which helps to improve performance and efficiently manage injuries. Third, with the introduction of an AI-based judgment system, it is being used for judge judgment. Fourth, it is leading the change in marketing and game broadcasting services. The technology of the 4th Industrial Revolution is bringing innovative changes to all industries, and the sports field is also in the process. The combination of big data and AI is expected to play an important role as a key technology in the rapidly changing future in a sports environment where scientific analysis and training determine victory or defeat.