• Title/Summary/Keyword: 비저항성

Search Result 2,961, Processing Time 0.027 seconds

Physiological and Biochemical Responses of Sedum kamtschaticum and Hosta longipes to Ozone Stress (기린초와 비비추의 오존에 대한 생리·생화학적 반응)

  • Cheng, Hyo Cheng;Woo, Su Young;Lee, Seong Han;Kwak, Myeong Ja;Kim, Kyeong Nam
    • Horticultural Science & Technology
    • /
    • v.31 no.1
    • /
    • pp.1-7
    • /
    • 2013
  • In this study, the resistance to ozone and characteristics of ozone-induced damage were investigated on the perennial ground cover plant species. Sedum kamtschaticum and Hosta longipes were exposed to $200{\mu}g{\cdot}kg^{-1}$ ozone for 8 hours per day (from 08:00 to 16:00) in the naturally irradiated phytotron. The extent of ozone-induced damage was measured through the analysis of physiological parameters, such as water use efficiency (WUE), chlorophyll content (Chl. a, Chl. b, Chl. a + b, and Chl. a/b ratio), carotenoid contents, and the induction of reactive oxygen species (ROS). Ozone exposure significantly reduced the daytime WUE in both species. The contents of chlorophyll and carotenoid were also decreased and ROS, such as hydrogen peroxide ($H_2O_2$) and superoxide radical ($O_2{^-}$) were accumulated after ozone exposure. The above results of this study suggested that S. kamtschaticum is more resistant to atmospheric ozone than Hosta longipes. Considering its fast responses to ozone, it was also assumed that Hosta longipes can be used as an indicator plant of an increase in atmospheric ozone concentration.

Physicochemical, structural, pasting, and rheological properties of potato starch isolated from different cultivars (품종별 감자전분의 이화학적, 구조적, 페이스팅 및 유변학적 특성)

  • Lee, Jungu;Choi, Moonkyeung;Kang, Jinsoo;Chung, Yehji;Jin, Yong-Ik;Kim, Misook;Lee, Youngseung;Chang, Yoon Hyuk
    • Korean Journal of Food Science and Technology
    • /
    • v.49 no.4
    • /
    • pp.360-368
    • /
    • 2017
  • The objective of this research was to elucidate the physicochemical, structural, pasting and rheological properties of potato starch isolated from a foreign potato cultivar ('Atlantic') and new domestic potato cultivars ('Goun', 'Sebong', and 'Jinsun'). Scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), and one-dimensional nuclear magnetic resonance (1D NMR) showed that the structural properties of potato starch did not vary significantly with cultivars. RVA analysis demonstrated that the 'Atlantic' starch had the highest breakdown viscosity among all potato starches. In steady shear rheological analysis, all potato starch dispersions showed shear-thinning behaviors (n =0.63-0.72) at $25^{\circ}C$. The highest apparent viscosity (${\eta}_{a,5}$), consistency index (K), and yield stress (${\sigma}_{oc}$) were observed in the 'Goun' starch dispersion. In dynamic shear rheological analysis, storage modulus (G') and loss modulus (G") values of new domestic potato starch dispersions were higher than those of the 'Atlantic' starch dispersion.

Effects of insulin and exercise on glucose uptake of skeletal muscle in diabetic rats (당뇨병 흰쥐에서 운동부하가 시험관 실험에서 골격근의 당섭취에 미치는 영향)

  • Park, Jin-Hyun;Kim, Young-Woon;Kim, Jong-Yeon;Lee, Suck-Kang
    • Journal of Yeungnam Medical Science
    • /
    • v.7 no.1
    • /
    • pp.29-37
    • /
    • 1990
  • The effects of insulin and exercise on glucose uptake of skeletal muscle were investigated in soleus muscle isolated from low dose streptozotocin induced diabetic rats in vitro. Glucose uptake was assessed by measuring $^3H$-methylglucose uptake in vitro. Basal glucose uptake in diabetes was reduced by approximately one-third of the control value($5.6{\pm}0.73{\mu}Mol$/g/20min. in diabetes versus $8.4{\pm}0.77$ in control, P<0.01). There was also a significant decrease(P<0.01) in glucose uptake of diabetes at physiologic insulin concentration ($200{\mu}IU$/ml) by 40% ($6.1{\pm}1.20$ versus $10.0{\pm}0.81$). Furthermore, maximal insulin($20000{\mu}IU$/ml)-stimulated glucose uptake was 36% lower in diabetes as compared with control($7.3{\pm}1.29$ versus $11.4{\pm}1.29$, P<0.01). In contrast, exercise(1.0km/hr, treadmill running for 45min.) effect on glucose uptake was so dramatic in diabetes that glucose uptake at basal state was 8.4+1.09 and insulin stimulated-glucose uptake were $10.2{\pm}1.47$ and $11.9{\pm}1.64$, in 200 and $20000{\mu}IU$/ml added insulin, respectively. These results suggest that insulin insensitivity develops in skeletal muscle after 2 weeks of streptozotocin-induced diabetes, but these insensitivity was recovered significantly by single session of running exercise.

  • PDF

Bond Behavior of Epoxy Coated Reinforcement Using Direct Pull-out Test and Beam-End Test (직접인발시험과 보-단부 시험을 이용한 에폭시 도막 철근의 부착특성)

  • Kim, Jee-Sang;Kang, Won Hyeak
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.3
    • /
    • pp.271-278
    • /
    • 2019
  • The corrosion of reinforcements embedded in concrete causes severe deterioration in reinforced concrete structures. As a countermeasure, epoxy coated reinforcements are used to prevent corrosion of reinforcements. When epoxy coated bars are used, the resistance of corrosion is excellent, but epoxy coating on the bars have a disadvantage of reduction in bond capacity comparing to that of normal bars. Therefore, it is necessary to confirm the bond performance of epoxy coated reinforcements through experimental and analytical methods. Bond behaviors of epoxy coated bars for various diameters of 13 and 19mm and thicknesses of cover concrete of 3 types(ratio of cover to bar diameter) are examined. As the diameters of the epoxy coated bars increase, the difference of bond strength between epoxy coated and uncoated bars also increases and damage patterns showed pull out failure. In addition, finite element analysis was performed based on the bond-slip relationship obtained by direct pullout test and compared with the flexural test results. It is considered that flexural member test is more useful than pullout test for simulating the behavior of actual structure.

Application of Electrical Resistivity Measurement to an Evaluation of Saline Soil in Cropping Field (염류집적 농경지에서 전기비저항 탐사기법의 활용성)

  • Yoon, Sung-Won;Park, Sam-Gyu;Chun, Hyen-Jung;Han, Keung-Hwa;Kang, Seong-Soo;Kim, Myung-Suk;Kim, Yoo-Hak
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.6
    • /
    • pp.1035-1041
    • /
    • 2011
  • Salinity of soil under the plastic film houses in Korea is known as a significant factor to lower the crop production and to hamper the sustainable agricultural land management. In this study we propose a field monitoring technique to examine the methods applied to minimize the adverse effect of salts in soil based on the relationship between soil electrical characteristics and soil properties. Field experiments for 4 different treatments (water only, fertilizer only, DTPA only, and DTPA and fertilizer together) were conducted on soils at the plastic film house built for cultivating a cucumber plant located at Chunan-si, Chungchungnam-do in Korea. The electrical resistivity was measured by both a dipole-dipole and wenner multi-electrodes array method. After the electrical resistivity measurement we also measured the soil water content, temperature, and electrical conductivity on surface soil. The resulted image of the interpreted resistivity by the inversion technique presented a unique spatial distribution depending on the treatment, implying the effect of the different chemical components. It was also highly suspected that resistivity response changed with the nutrients level, suggesting that our proposed technique could be the effective tool for the monitoring soil water as well as nutrient during the cropping period. Especially, subsoils under DTPA treatment at 40 to 60 cm depth typically presented lower soil water accumulation comparing to subsoils under non-DTPA treatment. It is considered that DTPA resulted in increase of a root water uptake. However, our demonstrated results were mainly based on qualitative comparison. Further experiments need to be conducted to monitor temporal changes of electrical resistivity using time lapse analysis, providing that a plant root activity difference based on changes of soil water and nutrients level in time.

Identification of Antiviral-related Genes Up-regulated in Response to Bombyx mori Nucleopolyhedrovirus (누에로부터 핵다각체병 바이러스 방어관련 유전자 정보 분석)

  • Goo, Tae-Won;Hong, Sun-Mee;Kim, Sung-Wan;Choi, Kwang-Ho;Kim, Seong-Ryul;Park, Seung-Won;Kang, Seok-Woo;Yun, Eun-Young
    • Journal of Sericultural and Entomological Science
    • /
    • v.50 no.2
    • /
    • pp.53-62
    • /
    • 2012
  • Silkworm larvae often suffer from viral infections causing heavy losses to the economy of silk industry. Insects exhibit both humoral and cellular immune responses that are effective against various pathohens like bacteria, fungi, protozoa, etc., but no insect immune responses is effective against viral infection. To obtain genes related to insect antiviral immunity from Bombyx mori, the cDNA library was constructed from B. mori nucleopolyhedrovirus (BmNPV)-infected B. mori. From the cDNA library, we selected 411 differentially expressed clones, and the 5' ends of the inserts were sequenced to generate ESTs. In this work, 135 unigenes were generated after the assembly of 411 differentially expressed clones ESTs. Of these 135 unigenes, we selected 109 antiviral response-related candidates except 26 clones that high similarity with genes derived from BmNPV. Among 109 unigenes, a total of 80% had significant matches to genes from other organisms in the database, wheres 20% of the unigenes had not matched in the database. Functional groups of these sequences with matches in database were constructed according to their putative biological function. Three largest categories were control of cellular oraganization (52%), metabolism (20%), and protein fate (10%). The genetic information reported in this study will provide more information about antiviral-related genes in silkworms.

Chicken FMRP Translational Regulator 1 (FMR1) Promotes Early Avian Influenza Virus Transcription without Affecting Viral Progeny Production in DF1 Cells

  • Woo, Seung Je;Park, Young Hyun;Han, Jae Yong
    • Korean Journal of Poultry Science
    • /
    • v.48 no.2
    • /
    • pp.81-90
    • /
    • 2021
  • Avian influenza viruses (AIVs) must utilize host cellular factors to complete their life cycle, and fragile X mental retardation protein (FMRP) has been reported to be a host factor promoting AIV ribonucleoprotein (vRNP) assembly and exports vRNP from the nucleus to the cytoplasm. The functional role of chicken FMRP translational regulator 1 (cFMR1) as a host factor of AIV is, however, poorly understood. In this study, we targeted the cFMR1 gene in DF1 cells using clustered regularly interspaced short palindromic repeats/Cas9-mediated genome editing to examine the functional role of cFMR1 as a host factor of AIV. We found that cFMR1 stimulated viral gene transcription during early stages of the viruses' life cycle and did not affect viral progeny production and viral polymerase activity in DF1 cells 24 hours post infection. cFMR1 overexpression did not exert significant effects on virus production, compared to the control. Therefore, unlike in mammalian systems (e.g., humans or mice), cFMR1 did not play a pivotal role in AIV but only seemed to stimulate viral proliferation during early stages of the viral life cycle. These results imply that the interplay between host factors and AIV differs between mammals and avian species, and such differences should be considered when developing anti-viral drugs for birds or establishing AIV-resistant bird models.

Characteristics of Cancer Stem Cells and Immune Checkpoint Inhibition (암줄기세포의 특성 및 면역관문억제)

  • Choi, Sang-Hun;Kim, Hyunggee
    • Journal of Life Science
    • /
    • v.29 no.4
    • /
    • pp.499-508
    • /
    • 2019
  • Cancer stem cells (CSCs), which are primarily responsible for metastasis and recurrence, have self-renewal, differentiation, therapeutic resistance, and tumor formation abilities. Numerous studies have demonstrated the signaling pathways essential for the acquisition and maintenance of CSC characteristics, such as WNT/${\beta}$-catenin, Hedgehog, Notch, B lymphoma Mo-MLV insertion region 1 homolog (BMI1), Bone morphogenetic protein (BMP), and TGF-${\beta}$ signals. However, few therapeutic strategies have been developed that can selectively eliminate CSCs. Recently, neutralizing antibodies against Cytotoxic T-lymphocyte associated protein 4 (CTLA-4) and Programmed cell death protein 1 (PD-1)/Programmed death-ligand 1 (PD-L1), immune checkpoint inhibitors (ICIs), have shown promising outcomes in clinical trials of melanoma, lung cancer, and pancreatic cancer, as well as in hematologic malignancies. ICIs are considered to outperform conventional anticancer drugs by maintaining long-lasting anti-cancer effects, with less severe side effects. Several studies reported that ICIs successfully blocked CSC properties in head and neck squamous carcinomas, melanomas, and breast cancer. Together, these findings suggest that novel and effective anticancer therapeutic modalities using ICIs for selective elimination of CSCs may be developed in the near future. In this review, we highlight the origin and characteristics of CSCs, together with critical signaling pathways. We also describe progress in ICI-mediated anticancer treatment to date and present perspectives on the development of CSC-targeting ICIs.

Factors Affecting Basilar Artery Pulsatility Index on Transcranial Doppler (뇌혈류 초음파 검사에서 기저동맥 박동지수에 영향을 미치는 인자)

  • Jeong, Ho Tae;Kim, Dae Sik;Kang, Kun Woo;Nam, Yun Teak;Oh, Ji Eun;Cho, Eun Kyung
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.50 no.4
    • /
    • pp.477-483
    • /
    • 2018
  • Transcranial doppler is a non-invasive method that measures the blood flow velocity and the direction of cerebral blood vessels through the doppler principle. The pulsatility index is an index for measuring the transcranial doppler that reflects the distal vascular resistance and is used as an index for the presence and diffusion of cerebral small vessel diseases. The purpose of this study was to evaluate the risk factors affecting the basilar artery pulsatility index in ischemic stroke patients. From January 2014 to May 2015, 422 patients were selected by measuring the transcranial doppler pulsatility index, considering their basilar artery pulsatility index. Univariate analysis was performed using the basilar artery pulsatility index as a dependent variable. Multiple regression analysis was performed considering the factors affecting the pulsatility index as variables. Univariate analysis revealed age, presence of hypertension, presence of diabetes mellitus, presence of hyperlipidemia, and hematocrit (P<0.1) as factors. Multiple regression analysis showed statistically significant results with age (P<0.001), presence of diabetes (P=0.004), and presence of hyperlipidemia (P=0.041). The risk factors affecting the basilar artery pulsatility index of transcranial doppler were age, diabetes, and hyperlipidemia. Further research will be needed to increase the cerebral pulsatility index as a surrogate marker of the elderly, diabetes, and hyperlipidemia.

Seismic Performance Assessment of a Composite Modular System Considering Stiffness of Connections (접합부 강성을 고려한 합성 모듈러 시스템의 내진 성능평가)

  • Choi, Young-Hoo;Lee, Ho-Chan;Kim, Jin-Koo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.1
    • /
    • pp.9-18
    • /
    • 2019
  • Modular system can be divided into two types based on the methods of resisting load. The one is the open-sided modular system composed of beams and columns. The other is the enclosed modular system composed of panels and studs. Of the Modular systems, the use of open-sided modular system is limited because it consists of closed member sections. In order to solve this problem, Choi et al.(2017) proposed a composite modular system with folded steel members filled with concrete. However, it was assumed in the previous study that the connections between modules are composed of rigid joint. Therefore it didn't identify the effect of connection behavior in structure. This study used finite element analysis to calculate stiffness of the connections in the proposed modular system. The linearization method presented in FEMA 440 is used for seismic performance assessment of structures, considering the connection stiffness computed in this study. The result of analysis shows that the capacity and story drift ratio obtained in the model considering stiffness of connection are less than those in the model not considering connection stiffness. Based on this observation, it is concluded that the stiffness of connection has a considerable effect on structural behavior.