• Title/Summary/Keyword: 비용 함수

Search Result 1,093, Processing Time 0.034 seconds

A Study on Development of Portable Concrete Crack Measurement Device Using Image Processing Technique and Laser Sensors (이미지 처리기법 및 레이저 센서를 이용한 휴대용 콘크리트 균열 측정 장치 개발에 관한 연구)

  • Seo, Seunghwan;Ohn, Syng-Yup;Kim, Dong-Hyun;Kwak, Kiseok;Chung, Moonkyung
    • Journal of the Korean Geosynthetics Society
    • /
    • v.19 no.4
    • /
    • pp.41-50
    • /
    • 2020
  • Since cracks in concrete structures expedite corrosion of reinforced concrete over a long period of time, regular on-site inspections are essential to ensure structural usability and prevent degradation. Most of the safety inspections of facilities rely on visual inspection with naked eye, so cost and time consuming are severe, and the reliability of results differs depending on the inspector. In this study, a portable measuring device that can be used for safety diagnosis and maintenance was developed as a device that measures the width and length of concrete cracks through image analysis of cracks photographed with a camera. This device captures the cracks found within a close distance (3 m), and accurately calculates the unit pixel size by laser distance measurement, and automatically calculates the crack length and width with the image processing algorithm developed in this study. In measurement results using the crack image applied to the experiment, the measurement of the length of a 0.3 mm crack within a distance of 3 m was possible with a range of about 10% error. The crack width showed a tendency to be overestimated by detecting surrounding pixels due to vibration and blurring effect during the binarization process, but it could be effectively corrected by applying the crack width reduction function.

A Study on Optimization of Perovskite Solar Cell Light Absorption Layer Thin Film Based on Machine Learning (머신러닝 기반 페로브스카이트 태양전지 광흡수층 박막 최적화를 위한 연구)

  • Ha, Jae-jun;Lee, Jun-hyuk;Oh, Ju-young;Lee, Dong-geun
    • The Journal of the Korea Contents Association
    • /
    • v.22 no.7
    • /
    • pp.55-62
    • /
    • 2022
  • The perovskite solar cell is an active part of research in renewable energy fields such as solar energy, wind, hydroelectric power, marine energy, bioenergy, and hydrogen energy to replace fossil fuels such as oil, coal, and natural gas, which will gradually disappear as power demand increases due to the increase in use of the Internet of Things and Virtual environments due to the 4th industrial revolution. The perovskite solar cell is a solar cell device using an organic-inorganic hybrid material having a perovskite structure, and has advantages of replacing existing silicon solar cells with high efficiency, low cost solutions, and low temperature processes. In order to optimize the light absorption layer thin film predicted by the existing empirical method, reliability must be verified through device characteristics evaluation. However, since it costs a lot to evaluate the characteristics of the light-absorbing layer thin film device, the number of tests is limited. In order to solve this problem, the development and applicability of a clear and valid model using machine learning or artificial intelligence model as an auxiliary means for optimizing the light absorption layer thin film are considered infinite. In this study, to estimate the light absorption layer thin-film optimization of perovskite solar cells, the regression models of the support vector machine's linear kernel, R.B.F kernel, polynomial kernel, and sigmoid kernel were compared to verify the accuracy difference for each kernel function.

Scheduling of Parallel Offset Printing Process for Packaging Printing (패키징 인쇄를 위한 병렬 오프셋 인쇄 공정의 스케줄링)

  • Jaekyeong, Moon;Hyunchul, Tae
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.28 no.3
    • /
    • pp.183-192
    • /
    • 2022
  • With the growth of the packaging industry, demand on the packaging printing comes in various forms. Customers' orders are diversifying and the standards for quality are increasing. Offset printing is mainly used in the packaging printing since it is easy to print in large quantities. However, productivity of the offset printing decreases when printing various order. This is because it takes time to change colors for each printing unit. Therefore, scheduling that minimizes the color replacement time and shortens the overall makespan is required. By the existing manual method based on workers' experience or intuition, scheduling results may vary for workers and this uncertainty increase the production cost. In this study, we propose an automated scheduling method of parallel offset printing process for packaging printing. We decompose the original problem into assigning and sequencing orders, and ink arrangement for printing problems. Vehicle routing problem and assignment problem are applied to each part. Mixed integer programming is used to model the problem mathematically. But it needs a lot of computational time to solve as the size of the problem grows. So guided local search algorithm is used to solve the problem. Through actual data experiments, we reviewed our method's applicability and role in the field.

Post-Quantum Security Strength Evaluation through Implementation of Quantum Circuit for SIMECK (SIMEC 경량암호에 대한 양자회로 구현 및 Post-Quantum 보안 강도 평가)

  • Song Gyeong Ju;Jang Kyung Bae;Sim Min Joo;Seo Hwa Jeong
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.12 no.6
    • /
    • pp.181-188
    • /
    • 2023
  • Block cipher is not expected to be safe for quantum computer, as Grover's algorithm reduces the security strength by accelerating brute-force attacks on symmetric key ciphers. So it is necessary to check the post-quantum security strength by implementing quantum circuit for the target cipher. In this paper, we propose the optimal quantum circuit implementation result designed as a technique to minimize the use of quantum resources (qubits, quantum gates) for SIMECK lightweight cryptography, and explain the operation of each quantum circuit. The implemented SIMECK quantum circuit is used to check the estimation result of quantum resources and calculate the Grover attack cost. Finally, the post-quantum strength of SIMECK lightweight cryptography is evaluated. As a result of post-quantum security strength evaluation, all SIMECK family cipher failed to reach NIST security strength. Therefore, it is expected that the safety of SIMECK cipher is unclear when large-scale quantum computers appear. About this, it is judged that it would be appropriate to increase the block size, the number of rounds, and the key length to increase the security strength.

A Study on the Prediction Models of Used Car Prices for Domestic Brands Using Machine Learning (머신러닝을 활용한 브랜드별 국내 중고차 가격 예측 모델에 관한 연구)

  • Seungjun Yim;Joungho Lee;Choonho Ryu
    • Journal of Service Research and Studies
    • /
    • v.13 no.3
    • /
    • pp.105-126
    • /
    • 2023
  • The domestic used car market continues to grow along with the used car online platform service. The used car online platform service discloses vehicle specifications, accident history, inspection history, and detailed options to service consumers. Most of the preceding studies were predictions of used car prices using vehicle specifications and some options for vehicles. As a result of the study, it was confirmed that there was a nonlinear relationship between used car prices and some specification variables. Accordingly, the researchers tried to solve the nonlinear problem by executing a Machine Learning model. In common, the Regression based Machine Learning model had the advantage of knowing the actual influence and direction of variables, but there was a disadvantage of low Cost Function figures compared to the Decision Tree based Machine Learning model. This study attempted to predict used car prices of six domestic brands by utilizing both vehicle specifications and vehicle options. Through this, we tried to collect the advantages of the two types of Machine Learning models. To this end, we sequentially conducted a regression based Machine Learning model and a decision tree based Machine Learning model. As a result of the analysis, the practical influence and direction of each brand variable, and the best tree based Machine Learning model were selected. The implications of this study are as follows. It will help buyers and sellers who use used car online platform services to predict approximate used car prices. And it is hoped that it will help solve the problem caused by information inequality among users of the used car online platform service.

An Efficient Routing Scheme based on Link Quality and Load Balancing for Wireless Sensor Networks (무선 센서 네트워크에서 링크 상태 및 트래픽 분산 정보를 이용한 효과적인 라우팅 방법)

  • Kim, Sun-Myeng;Yang, Yeon-Mo
    • Journal of the Korea Society for Simulation
    • /
    • v.19 no.4
    • /
    • pp.11-19
    • /
    • 2010
  • ZigBee is a standard for wireless personal area networks(WPANs) based on the IEEE 802.15.4 standard. It has been developed for low cost and low power consumption. There are two alternative routing schemes that have been proposed for the ZigBee standard: Ad-hoc On-Demand Distance Vector(AODV) and tree routing. The tree routing forwards packets from sensors to a sink node based on the parent-child relationships established by the IEEE 802.15.4 MAC topology formation procedure. In order to join the network, a sensor node chooses an existing node with the strongest RSSI(Received signal strength indicator) signal as a parent node. Therefore, some nodes carry a large amount of traffic load and exhaust their energy rapidly. To overcome this problem, we introduce a new metric based on link quality and traffic load for load balancing. Instead of the strength of RSSI, the proposed scheme uses the new metric to choose a parent node during the topology formation procedure. Extensive simulation results using TOSSIM(TinyOS mote SIMulator) show that the CFR scheme outperforms well in comparison to the conventional tree routing scheme.

Efficient IoT data processing techniques based on deep learning for Edge Network Environments (에지 네트워크 환경을 위한 딥 러닝 기반의 효율적인 IoT 데이터 처리 기법)

  • Jeong, Yoon-Su
    • Journal of Digital Convergence
    • /
    • v.20 no.3
    • /
    • pp.325-331
    • /
    • 2022
  • As IoT devices are used in various ways in an edge network environment, multiple studies are being conducted that utilizes the information collected from IoT devices in various applications. However, it is not easy to apply accurate IoT data immediately as IoT data collected according to network environment (interference, interference, etc.) are frequently missed or error occurs. In order to minimize mistakes in IoT data collected in an edge network environment, this paper proposes a management technique that ensures the reliability of IoT data by randomly generating signature values of IoT data and allocating only Security Information (SI) values to IoT data in bit form. The proposed technique binds IoT data into a blockchain by applying multiple hash chains to asymmetrically link and process data collected from IoT devices. In this case, the blockchainized IoT data uses a probability function to which a weight is applied according to a correlation index based on deep learning. In addition, the proposed technique can expand and operate grouped IoT data into an n-layer structure to lower the integrity and processing cost of IoT data.

Study on Risk Priority for TBM Tunnel Collapse based on Bayes Theorem through Case Study (사례분석을 통한 베이즈 정리 기반 TBM 터널 붕괴 리스크 우선순위 도출 연구)

  • Kwon, Kibeom;Kang, Minkyu;Hwang, Byeonghyun;Choi, Hangseok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.6
    • /
    • pp.785-791
    • /
    • 2023
  • Risk management is essential for preventing accidents arising from uncertainties in TBM tunnel projects, especially concerning managing the risk of TBM tunnel collapse, which can cause extensive damage from the tunnel face to the ground surface. In addition, prioritizing risks is necessary to allocate resources efficiently within time and cost constraints. Therefore, this study aimed to establish a TBM risk database through case studies of TBM accidents and determine a risk priority for TBM tunnel collapse using the Bayes theorem. The database consisted of 87 cases, dealing with three accidents and five geological sources. Applying the Bayes theorem to the database, it was found that fault zones and weak ground significantly increased the probability of tunnel collapse, while the other sources showed low correlations with collapse. Therefore, the risk priority for TBM tunnel collapse, considering geological sources, is as follows: 1) Fault zone, 2) Weak ground, 3) Mixed ground, 4) High in-situ stress, and 5) Expansive ground. In practice, the derived risk priority can serve as a valuable reference for risk management, enhancing the safety and efficiency of TBM construction. It provides guidance for developing appropriate countermeasure plans and allocating resources effectively to mitigate the risk of TBM tunnel collapse.

Optimal deployment of sonobuoy for unmanned aerial vehicles using reinforcement learning considering the target movement (표적의 이동을 고려한 강화학습 기반 무인항공기의 소노부이 최적 배치)

  • Geunyoung Bae;Juhwan Kang;Jungpyo Hong
    • The Journal of the Acoustical Society of Korea
    • /
    • v.43 no.2
    • /
    • pp.214-224
    • /
    • 2024
  • Sonobuoys are disposable devices that utilize sound waves for information gathering, detecting engine noises, and capturing various acoustic characteristics. They play a crucial role in accurately detecting underwater targets, making them effective detection systems in anti-submarine warfare. Existing sonobuoy deployment methods in multistatic systems often rely on fixed patterns or heuristic-based rules, lacking efficiency in terms of the number of sonobuoys deployed and operational time due to the unpredictable mobility of the underwater targets. Thus, this paper proposes an optimal sonobuoy placement strategy for Unmanned Aerial Vehicles (UAVs) to overcome the limitations of conventional sonobuoy deployment methods. The proposed approach utilizes reinforcement learning in a simulation-based experimental environment that considers the movements of the underwater targets. The Unity ML-Agents framework is employed, and the Proximal Policy Optimization (PPO) algorithm is utilized for UAV learning in a virtual operational environment with real-time interactions. The reward function is designed to consider the number of sonobuoys deployed and the cost associated with sound sources and receivers, enabling effective learning. The proposed reinforcement learning-based deployment strategy compared to the conventional sonobuoy deployment methods in the same experimental environment demonstrates superior performance in terms of detection success rate, deployed sonobuoy count, and operational time.

A study on automated soil moisture monitoring methods for the Korean peninsula based on Google Earth Engine (Google Earth Engine 기반의 한반도 토양수분 모니터링 자동화 기법 연구)

  • Jang, Wonjin;Chung, Jeehun;Lee, Yonggwan;Kim, Jinuk;Kim, Seongjoon
    • Journal of Korea Water Resources Association
    • /
    • v.57 no.9
    • /
    • pp.615-626
    • /
    • 2024
  • To accurately and efficiently monitor soil moisture (SM) across South Korea, this study developed a SM estimation model that integrates the cloud computing platform Google Earth Engine (GEE) and Automated Machine Learning (AutoML). Various spatial information was utilized based on Terra MODIS (Moderate Resolution Imaging Spectroradiometer) and the global precipitation observation satellite GPM (Global Precipitation Measurement) to test optimal input data combinations. The results indicated that GPM-based accumulated dry-days, 5-day antecedent average precipitation, NDVI (Normalized Difference Vegetation Index), the sum of LST (Land Surface Temperature) acquired during nighttime and daytime, soil properties (sand and clay content, bulk density), terrain data (elevation and slope), and seasonal classification had high feature importance. After setting the objective function (Determination of coefficient, R2 ; Root Mean Square Error, RMSE; Mean Absolute Percent Error, MAPE) using AutoML for the combination of the aforementioned data, a comparative evaluation of machine learning techniques was conducted. The results revealed that tree-based models exhibited high performance, with Random Forest demonstrating the best performance (R2 : 0.72, RMSE: 2.70 vol%, MAPE: 0.14).