• Title/Summary/Keyword: 비선형 토크

Search Result 94, Processing Time 0.022 seconds

Prediction of the Torque Capacity for Tubular Adhesive Joints with Composite Adherends (복합재료 접착체를 가지는 튜브형 접합부의 토크전달능력 예측)

  • Oh, Je-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.12 s.255
    • /
    • pp.1543-1550
    • /
    • 2006
  • Since the performance of joints usually determines the structural efficiency of composite structures, an extensive knowledge of the behavior of adhesive joints and the related effect on joint strength is essential for design purposes. In this study, the torque capacity of adhesive joints was predicted using the combined thermal and mechanical analyses when the adherend was a composite tube. A finite element analysis was performed to evaluate residual thermal stresses developed in the joint, and mechanical s stresses in the adhesive were calculated including both the nonlinear adhesive behavior and the behavior of composite tubes. Three different joint failure modes were considered to predict joint failure: interfacial failure, adhesive bulk failure, and adherend failure. The influence of the composite adherend stacking angle on the residual thermal stresses was investigated, and how the residual thermal stresses affect the joint strength was also discussed. Finally, the predicted results were compared with experimental results available in literature.

Investigation on Direct Driven IPMSM for Next Generation Locomotive (차세대 전동차용 직접 구동용 매입형 영구자석 동기전동기의 특성 고찰)

  • Kim, Min-Seok;Park, Ji-Seong;Kim, Dae-Kwang;Kim, Jung-Chul;Jung, Sang-Yong
    • Journal of the Korean Society for Railway
    • /
    • v.11 no.4
    • /
    • pp.398-403
    • /
    • 2008
  • The propulsion for locomotive application has changed from the DC motor system to the induction motor system. Although the induction motor system has almost reached the stage of maturity, this system also needs to be changed to the PM motor system for the direct drive without using reduction gear. Thus, the IPMSM (Interior buried Permanent Magnet Synchronous Motor) has been adopted to meet the locomotive driving specification. Where the wheel is directly dirven by the traction motor. In this paper, the investigation on IPMSM satisfying driving specifications for the direct drive has been performed using the advanced FEM.

Optimal Design of Passive Gravity Compensation System for Articulated Robots (수직다관절 로봇의 중력보상장치 최적설계)

  • Park, Jin-Gyun;Lee, Jae-Young;Kim, Sang-Hyun;Kim, Sung-Rak
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.1
    • /
    • pp.103-108
    • /
    • 2012
  • In this paper, the optimal design of a spring-type gravity compensation system for an articulated robot is presented. Sequential quadratic programming (SQP) is adopted to resolve various nonlinear constraints in spring design such as stress, buckling, and fatigue constraints, and to reduce computation time. In addition, continuous relaxation method is used to explain the integer-valued design variables. The simulation results show that the gravity compensation system designed by proposed method improves the performance effectively without additional weight gain in the main workspace.

Adaptive Chaos Control of Time-Varying Permanent-Magnet Synchronous Motors (시변 영구자석형 동기 전동기의 적응형 카오스 제어)

  • Jeong, Sang-Chul;Cho, Hyun-Cheol;Lee, Hyung-Ki
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.9 no.1
    • /
    • pp.89-97
    • /
    • 2008
  • Chaotic behavior in motor systems is undesired dynamics in real-time implementation since the speed is oscillated in a wide range and the torque is changed by a random manner. We present an adaptive control approach for time-varying permanent-magnet synchronous motors (PMSM) with chaotic phenomenon. We consider that its parameters are changed randomly within certain bounds. First, a nonlinear system model of a PMSM is transformed to derive a nominal linear control strategy. Then, an auxiliary control for compensating real-time control error occurred by system perturbation due to parameter change is designed by using Lyapunov stability theory. Numerical simulation is accomplished for evaluating its efficiency and reliability comparing with the traditional control method. Additionally, we test our control method in real-time motor experiment including a PSoC based drive system to demonstrate its practical applicability.

  • PDF

Ball end milling of sculptured surface models by considering machinability (절삭성을 고려한 자유곡면 모형의 볼 엔드 밀링가공에 관한 연구)

  • 박천경;맹희영
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.6
    • /
    • pp.2048-2061
    • /
    • 1991
  • As compared with other cutting types, the ball end milling process causes a complexity in cutting system and a falling-off of machinability. In order to increase the productivity and efficiency in th NC machining of sculptured surfaces, this study carried out the qualitative linearized evaluation about the ball end milling system and applied their practical expressions to the technological processor at the cutter path planning stage. The evaluated expressions were proved to be adequate for practical use from an accuracy point of view and the estimation models were applied to sculptured surface machining processes for finding variable machining conditions. Consequently, it was recognized that variable machining conditions bring about the dispersion of force system and the reduction of machining time by more than 50%.

A Study on Calculating Inductance Characteristics of Switched Reluctance Motor (스위치드 리럭턴스 전동기의 인덕터스 산정에 관한 연구)

  • 최경호;김동희;노채균;김민희
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.6 no.4
    • /
    • pp.333-340
    • /
    • 2001
  • This paper presents a calculating method for inductance of the Switched Reluctance Motor(SRM) for torque characteristics and driving by analytical model. The torque generating characteristics of the SRM depend on the phase current and the inductance variation features, but Its nonlinear magnetic characteristics make it difficult to calculating inductance. Recently, The approaches for calculating inductance have taken vary from detailed finite element method(FEM) and Fitting method in magnetization curves using complex nonlinear magnetic circuit models. But those methods have not satisfactory approach for machine performance calculations, because of having a long time and remodeling for analyses, therefore thus an alternative approach is required. So it is suggested simply calculating method of the inductance based on designed data of machinery by analytical model in unaligned and aligned rotor. In order to prove the calculating, there are compare with analytical FEM. direct measurement, this method, and simulation. The compared result is shown to obtain good accuracy.

  • PDF

The Control of 3-Phase Induction Motor by Hybrid Fuzzy-PID Controller : Auto-Tuning of Parameters using Genetic Algorithms (하이브리드 퍼지-PID 제어기에 의한 3상 유도 전동기의 속도제어 : 유전자 알고리즘에 의한 파라미터의 자동 동조)

  • Kwon, Yang-Won;Ahn, Tae-Chon;Kang, Hak-Su;Yoon, Yang-Woong
    • Proceedings of the KIEE Conference
    • /
    • 1999.07b
    • /
    • pp.794-796
    • /
    • 1999
  • 본 논문에서는 3상 유도전동기의 속도를 제어하는데 기존 제어기의 문제점을 해결하고 최적화하기 위해서 유전자 알고리즘을 이용한 하이브리드 퍼지 -PID(HFPID) 제어기를 고안하고, 이에 대한 파라미터 설정 방법을 제안한다. 유도전동기의 제어는 지연시간이 길고, 비선형성이 강하며, 부하변동이 잦은 프로세스이기 때문에, 기존의 제어방식으로는 만족할만한 결과를 얻을 수 없다. 제안한 하이브리드 퍼지-PID 제어기는 PID 제어기의 장점인 과도기의 우수성과 퍼지 제어기의 장점인 정상기의 우수성을 퍼지 변수로 결합시켜 설계한다. 이 제어기에 유전자 알고리즘을 적용하여 최적의 퍼지 및 PID 파라미터를 설정하다. 그리고 이 제어기를 3상 유도전동기의 속도 제어에 응용한다. 또한 속도오차에 대한 룩업 표를 만들어 온라인 실시간 제어를 가능하게 한다. 이상의 과정을 3상 유도전동기에서 컴퓨터 시뮬레이션 하였다. 시뮬레이션 결과를 비교해 볼 때, 하이브리드 퍼지-PID 제어기는 기존의 제어기 보다 전동기의 속도 및 토크성분 전류 둥의 특성에서 우수한 성능을 보였다.

  • PDF

Tracking Control of IPMSM using the Active Disturbance Rejection Control (매입형 영구자석 동기전동기의 능동외란제거제어를 이용한 추종제어)

  • Jeon, Yong-Ho;Chae, Seong-Byeong
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.5
    • /
    • pp.859-866
    • /
    • 2022
  • Active disturbance rejection control is a method in which the disturbance is removed from the controller by estimating the state variable using the Luenberger observer. The Luenberger observer is estimated by defining a nonlinear term including disturbance with constant characteristics in a steady state as a state variable. It can be shown that the speed tracking performance is improved by compensating the estimated state variable to the PI controller and the IP controller. The disturbance removal performance of the tracking control can be confirmed by observing that the estimated state error is within 1.9 [%] in the case of load fluctuation and the steady-state state tracking error converges to zero.

Speed control of IPMSM using the Disturbance Estimator (외란 추정기를 이용한 매입형 영구자석 동기전동기의 속도제어)

  • Jeon, Yong-Ho
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.5
    • /
    • pp.867-872
    • /
    • 2022
  • The effect of load is an important factor in precise speed control of a motor. n this study, we design a state observer that can estimate and define one state of disturbance including errors and nonlinear terms of mathematical models, which is not easy with a mathematical model. Then, the observation gain is set so that the estimation error of the state observation converges to 0, and the estimated state is used in the back stepping controller to design a controller capable of precise speed tracking. As a result of applying to 1 [hw] class Interior Permanent Magnet Synchronous Motor, excellent stste variable observation and tracking performance can be confirmed.

A Study on Simulation-based Optimization for Wind Turbine Controller Tuning (시뮬레이션 기반의 풍력발전제어시스템 최적화 기법에 관한 연구)

  • Jeon, Gyeong-Eon;No, Tae-Soo;Kim, Guk-Seon;Kim, Ji-Yon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.16 no.5
    • /
    • pp.503-510
    • /
    • 2011
  • This paper presents a method of optimizing the blade pitch and generator torque controllers which have been already designed for an existing wind turbine generator system. Since the highly nonlinear and uncertain characteristics of the wind turbine generator can not be fully considered in the controller design phase, some parameters such as control gains must be tuned during the field implementation phase. In this paper, nonlinear simulation software, which is based high fidelity wind turbine model, and optimization technique are effectively combined and used to tune a set of gains for the blade pitch and the generator torque controllers. Simulation results show that the baseline controllers can be effectively optimized to reduce the errors in wind turbine rotor speed and generator power output controls as well as twisting of the high and low speed shafts.