• Title/Summary/Keyword: 비선형 진동절연 시스템

Search Result 3, Processing Time 0.019 seconds

Methods to Obtain Approximate Responses of a Non-Linear Vibration Isolation System (비선형 진동절연 시스템의 근사적 응답을 구하는 방법)

  • Lee, Gun-Myung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.6
    • /
    • pp.23-28
    • /
    • 2020
  • A non-linear vibration isolation system composed of a non-linear spring and a linear damper was presented in a previous study. The advantage of the proposed isolator is the simple structure of the system. When the base of the isolator is harmonically excited, the response component of the mass at the excitation frequency was approximated using three different methods: linear approximation, harmonic balance, and higher-order frequency response functions (FRFs). The method using higher-order FRFs produces significantly more accurate results compared with the other methods. The error between the exact and approximate responses does not increase monotonously with the excitation amplitude and is less than 2%.

Approximate Response of a Non-linear Vibration Isolation System Using the Harmonic Balance Method (하모닉 밸런스법을 이용한 비선형 진동절연 시스템의 근사적 응답)

  • Lee, Gun-Myung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.6
    • /
    • pp.124-129
    • /
    • 2018
  • A non-linear vibration isolation system which is composed of a non-linear spring and a linear damper was proposed in past research. When the support of the isolation system is excited harmonically, the response component of the isolation system mass at the excitation frequency has been calculated approximately using the harmonic balance method. The response was approximated by a single mode, and the result was compared with a numerical result which is assumed as an accurate one. Next, the response was approximated by two modes, and the result was compared with the former one.

Development of the Optimal Design Technique for the Pneumatic Vibration Isolation System by Nonlinear Modeling and Analysis (공압방진시스템의 비선형 모델링과 해석을 통한 최적설계기술 개발)

  • 문준희;박희재
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.151-154
    • /
    • 2001
  • The pneumatic vibration isolation systems have been widely used in industry and laboratories, but the full mathematical analysis and nonlinear modeling techniques have not been reported yet, even while the nonlinear features of the pneumatic vibration isolation system decide the main characteristics. For instance, the orifice in a pneumatic vibration isolator has been traditionally considered as a simple viscous damper, which was too much simplified to explain the performance of the isolation system. In this paper, the nonlinear characteristics are considered for the orifice and chamber, etc. The numerical simulation is carried out by the MATLAB/Simulink software. From the analysis result, a clear trend of the nonlinear features is shown: the vibration transmissibility changes not only due to the excitation frequency but also due to the amplitude of the vibration excitation. Therefore various design parameters are optimally chosen for the vibration isolation system. The proposed methods show good compatibility between the analysis results and the experiments.

  • PDF