• Title/Summary/Keyword: 비선형 조석모형

Search Result 19, Processing Time 0.022 seconds

Numerical Modeling of Tide Asymmetry in the Southeast Coastal Zone of Yellow Sea (서해남부해역의 조석 비대칭에 대한 수치모의)

  • Jung, Tae-Sung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.23 no.6
    • /
    • pp.429-441
    • /
    • 2011
  • In the southeast coastal zone of Yellow Sea, the tide characteristics showing ebb-dominant tide and tidal flow were confirmed by analysis of observed tide and tidal currents. Physical factors generating asymmetric tide were reviewed. Influence of bottom shear stress, tidal flat, and nonlinear terms in shallow water equations was investigated by two-dimensional tide modeling. The model results gave good agreements with observed tides, but the amplitude of simulated $M_4$ tide was less than that of observed tide. The tidal flats existing in the study area widely have great effect on the generation of nonlinear tide. The M4 tide is mainly generated near the tidal flats. The deletion of tidal flats prevents the production of the M4 tide. We can conclude that the wide tidal flats is a primary cause of tide asymmetry in the study area.

Nonlinear Finite Element Model for Tidal Analysis(II) -Model Application (조석유동 해석을 위한 비선형 유한요소 모형(II) -모형의 적용-)

  • 나정우;권순국
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.37 no.1
    • /
    • pp.37-48
    • /
    • 1995
  • The TIDE, nonlinear finite element model for the simulation of tidal analysis in a shal- low ooastal area was tested for its applicability at the Saemankeum day. Calibration of the TIDE model has been carried out using the six observed field data collected at five locations within the region for tidal velocity. Verification tests have been done using the six observed field data and four data o- tained from the hydraulic model test for the tidal velocity and elevation. Since the simula- tion results for the tidal elevation at Kunsan outer port by the TIDE model are well agreed with the results from the tidal table for one month, it is proved that the TIDE model may be used effectively to predict the tidal movement in the Saemankeum bay for a longer period.

  • PDF

Tide and Sediment Transport in the Keum River Estuary (사강하구의 조석 및 토사이동)

  • 최병호;강경구;이석우
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.1 no.1
    • /
    • pp.31-43
    • /
    • 1989
  • Tidal asymmetry and the associated sediment dynamics in the Keum River Estuary has been investigated from a numerical tidal model. Modeling efforts were focussed on the simulation of large drying sandflat exposed at the mouth of the Estuary and dynamic combination of two-dimensional estuary model and one-dimensional river model. Despite strong frictional attenuation within the estuary, the M4 tides reach significant amplitude, resulting in strong tidal distortion. Model results show that the asymmetry over the area exhibit more intense flood flows transport than do less intense ebb flows of longer duration. This causes filling of the estuary as evidenced by large sandflats spread over the inner area. The spatial distribution of peak bottom stress computed from the tidal model suggest that present tidal sedimentation regime may be altered significantly, especially in the approach channel to outer Kunsan port and downstream part of the dike, due to the construction of cross-channel barrier.

  • PDF

Reproduction of Shallow Tides and Tidal Asymmetry by Using Finely Resolved Grid on the West Coast of Korea (서해연안 상세해상을 통한 천해조석 및 조석비대칭 재현)

  • Suh, Seung-Won
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.23 no.4
    • /
    • pp.313-325
    • /
    • 2011
  • Finite element grid system using h-refinement on the Yellow Sea was constructed based on previous study (Suh, 1999b) from 14 K to 210 K and special attention was concentrated on refining the coastal zone. In grid generation, depth change between adjacent points and non-dimensional tidal wave length ratio were considered. As a result approximately a quarter of the total nodes are located nearby 5 m of shallow area. Accurate bathymetry data using 30's and ETOPO1 with open boundary conditions of 8 major tidal constituents extracted automatically from FES2004 have been applied. In tidal simulation a 3-dimensional nonlinear harmonic model was setup and tidal amplification due to changes in vertical turbulent and bottom friction were simulated. In this study not only 8 major tidal constituents but also nonlinear shallow tides $M_4,$, $MS_4$ and long period $M_f,$, $M_{sf}$ were reproduced. It is found that implication of spatial variation of friction coefficient plays a very important role in reproduction of astronomical and shallow tides which are computed by iterative computation of nonlinear terms. Also it should be considered differently with respect to tidal periods. To understand the distribution of tidal asymmetry, amplitude ratio of $M_4/M_2$ and phase differences $2g(M_2)-g(M_4)$ were calculated. Tidal distortion ratio marks up to 0.2 on the west coast showing shallow coastal characteristics and somewhat wide range of ebb-dominances in front of Mokpo area are reproduced.

A fine grid two-dimensional $M_2$ tidal model of the East China Sea (동지나해의 세격자 2차원 $M_2$조석모형)

  • 최병호
    • Water for future
    • /
    • v.21 no.2
    • /
    • pp.183-192
    • /
    • 1988
  • The previous two-dimensional non-linear tidal model of the East China Sea(Choi, 1980) has been further refined to resolve the flow over the ocntinental shelf in more detail. The mesh resolution of the present finite-difference grid system used is 4 minutes latitude by 5 minutes longitude over the entire shelf. The developed fine grid two-dimensional model was utilized to reproduce the $M_2$ tide and $M_4$ tide for the East China Sea contnental shelf. There is general agreement between the model results and the current observation made in the Eastern Yellow Sea, which supports the calculated tidal regime over the shelf. Some preliminary results on maximum bottom stress and tidally-induced residual current were also examined and discussed.

  • PDF

Applicability of Coupled Tide-Surge Model (조석-해일 결합모형의 적용성 검토)

  • Park, Seon-Jung;Kang, Ju-Whan;Kim, Yang-Seon;Moon, Seung-Rok
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.22 no.4
    • /
    • pp.248-257
    • /
    • 2010
  • Applicability of the MIKE21 model as a real time coupled tide-surge model is examined prior to the application as an inundation model. Though the model domain contains the whole southern coasts of Korean Peninsula, the results of tide simulations show good agreement with the observed values. Moreover, the coupled tide-surge model simulates water levels well, especially near the sites which typhoon MAEMI(0314) struck, such as at Tongyung, Masan and Pusan. In addition, it is confirmed that the interaction between storm surge and tide is notable where the water depth is small and the tidal range is large, which indicates the necessity of coupled model especially at the southwestern coast.

Numerical Modeling of Ebb-Dominant Tidal Flow in the Mokpo Coastal Zone (목포해역 낙조류 우세현상의 수치모의)

  • Jung, Tae-Sung;Choi, Jong-Hwa
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.22 no.5
    • /
    • pp.333-343
    • /
    • 2010
  • In Mokpo coastal zone, the characteristics showing ebb-dominant tidal flow was confirmed by analysis of observed tide and tidal currents, Physical factors occurring ebb-dominant flow were reviewed. Influence of critical depth for drying, bottom shear stress, coastal reclamation, tidal amplitude, nonlinear tide, and eddy viscosity on the change of ebb-dominant flow was investigated by applying a two-dimensional circulation model. The simulation results for a variety of conditions showed that eddy viscosity and critical depth for drying does little or no impact on the generation of asymmetric flow. Strong bottom friction stress makes ebb-dominant flow clearly. Change of tidal flat into land swells ebb- dominant flow, and change of tidal flat into sea disappears ebb-dominant flow. Nonlinear tides play a decisive role in the generation of asymmetrical tidal flow. Non-linear tides should be included in the open boundary conditions of hydrodynamic modeling in the Mokpo coastal zone.

A Numerical Tidal Model of the Asan Bay (아산만(牙山灣)의 조석수치모형(潮汐數値模型))

  • Choi, Byung Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.10 no.2
    • /
    • pp.129-135
    • /
    • 1990
  • A two-dimensional nonlinear tidal model of the Asan Bay has been formulated to examine the tide and related hydraulic phenomena. The $M_2$ tidal regime was first computed using the model and the model also was to derive the maximum bed stress and transport potential in the region. Preliminary assessment of relation between sediment transport and the maximum bed stress distribution determined from the model are described.

  • PDF

Numerical Simulation of Surge - Wave Combined Inundation at Mokpo North Harbor (목포 북항에서 풍파에 의한 해수범람의 수치 모의)

  • Lee, Jung Lyul;Kang, Ju Whan;Yoon, Jong Tae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.3B
    • /
    • pp.307-313
    • /
    • 2008
  • Tidal amplification by construction of sea-dike and sea-walls had been detected not only near Mokpo North Harbor but also at Chungkye Bay which is connected with Mokpo North Harbor by a narrow channel. This brings about increase of tidal flat area and in particular increase of runup height and inundation area during storms. In this study, a simulation process is composed of wind wave generation model for large area and wave inundation model for small coastal zone. The nonlinear version of mild-slope equation is modified for simulating wind-driven surge and wave inundation at a small area. The models are applied to Chungkye Bay, and possible inundation features at Mokpo North Harbor are investigated.

Effect of Nonlinear Terms on the Generation of $M_2$ Tide Residual Elevation and $M_4$ Tide in the Yellow Sea and the East China Sea (황해ㆍ동중국해의 $M_2$ 조석 잔차위 및 $M_4$ 조석 생성에 대한 비선형항의 영향)

  • 이종찬;정경태;최병호
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.8 no.2
    • /
    • pp.137-145
    • /
    • 1996
  • Effects of nonlinear terms on the generation of M$_2$ tide residual elevation and M$_4$ tide in the Yellow Sea and the East China Sea are investigated using a depth-integrated two-dimensional nonlinear M$_2$tidal model. The model domain (117$^{\circ}$E-130$^{\circ}$E, 24$^{\circ}$N-41$^{\circ}$N) covers the whole region of the Yellow Sea and the East China Sea with grid resolution of 1/6$^{\circ}$ in longitude and 1/8$^{\circ}$in latitude. A radiational boundary condition is used along the open boundaries. Calculations show that advection terms yield negative residual elevation, while shallow-water terms in continuity equation yield positive residual elevation. The contribution of both advection terms and shallow-water terms to tile generation of the M$_4$ constituent is more than 90 percents, but that of quadratic bottom friction terms to the M$_4$ constituent is comparatively small.

  • PDF