• Title/Summary/Keyword: 비선형 정적 해석

Search Result 291, Processing Time 0.049 seconds

Improved Distribution of Seismic Forces for Evaluation of Nonlinear Seismic Response of Building Structures (건축구조물의 비선형 지진응답 평가를 위한 개선된 지진하중 분배방법)

  • 이동근;최원호;안지희
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.5 no.2
    • /
    • pp.33-47
    • /
    • 2001
  • 성능에 기초한 내진설계에서는 구조물이 보유하고 있는 능력을 효과적으로 파악하기 위해서 비선형 정적 해석이 적용되고 있다. 그러나 비선형 정적해석은 고차모드에 대한 효과를 고려하지 못함으로써 고층구조물이나 비정형 구조물과 같은 경우에는 정확한 비선형 지진응답의 산정과 내진성능을 평가하는데 문제점을 가지고 있다. 본 연구에서는 건축구조물의 선형 및 비선형 지진응답 평가를 위하여 응답 스펙트럼해석을 통하여 얻어지는 층전단력으로부터 층하중을 산정하는 유사동적해석법이 적용되었다. 제안된 방법을 비선형 정적 해석에 적용하여 구조물의 비선형 자동응답을 비선형 시간이력해석의 결과와 비교하였다. 기존의 층분포하중에 의한 비선형 지진응답과 비교하였으며, 제안된 방법에 의한 지진 응답이 구조물의 비선형 거동특성을 가장 정확하게 표현하였다. 그러므로 본 연구에서 제안된 방법을 사용하여 비선형 정적 해석을 수행한다면 비교적 명확한 건축물의 비선형 거동특성과 내진성능을 평가할 수 있을 것으로 판단된다.

  • PDF

Seismic Analysis of Cable-Stayed Bridges using Nonlinear Static Procedures (비선형 정적 해석법을 이용한 사장교의 지진해석)

  • Shin, Dong Kyu;Kwak, Hyo-Gyoung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.2A
    • /
    • pp.59-69
    • /
    • 2011
  • Nonlinear static procedures (NSPs) basing on the concept of performance based seismic design have become one of the promising procedures for seismic evaluation of buildings. Although it needs much less computational cost compared to nonlinear time history analysis (NTHA), its usages are limited to simple structures by its inherent restriction to structures wherein the fundamental mode dominates the response. Several new nonlinear static procedures (Modal Pushover Analysis; MPA and Improved Modal Pushover Analysis; IMPA) which can consider higher modes effect were introduced. Nonetheless, its applicability for complex structures such as cable-stayed bridge has not studied yet. This paper focuses on applicability of nonlinear static procedures for the seismic analysis of cable-stayed bridges. Moreover, reliability indexes which can predict analysis procedure's accuracy are introduced.

Applicability of Nonlinear Static Procedures with Earthquake Property (지진특성에 따른 비선형 정적해석법의 적용성)

  • Shin, Dong-Kyu;Kwak, Hyo-Gyoung
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.174-177
    • /
    • 2011
  • 비선형 정적 해석법(NSPs)은 최근 구조물의 지진해석방법으로서 그 사용성을 인정받고 있다. 비선형 정적 해석법은 직관적으로 구조물의 지진해석을 수행할 수 있는 등의 장점으로 빌딩구조물의 지진해석법으로 널리 사용되고 있지만, 기본 진동모드에 의해서 구조물의 거동이 지배되지 않는 구조물의 경우에는 그 사용성에 대한 연구가 매우 제한적이다. 이를 개선하기 위한 고차모드의 기여분을 반영할 수 있는 비선형 정적 해석법들이 제시 되었지만, 교량 구조물에 사용함에 있어서는 여전히 지진의 특성에 따라 그 사용성 및 신뢰성이 크게 변화하는 문제가 발생한다. 이 논문에서는 지진의 특성을 고려할 수 있는 두가지 지수를 제시하고, 이를 이용하여 비선형정적 해석법의 적용성을 사용단계에서 알아 낼 수 있는지에 대한 연구를 진행하였다.

  • PDF

Development of Linear Static Alternate Path Progressive Collapse Analysis Procedure Using a Nonlinear Static Analysis Procedure (비선형정적해석 절차를 이용한 선형정적 연쇄붕괴 대체경로 해석방법 개발)

  • Kim, Jin-Koo;Park, Sae-Ro-Mi;Seo, Young-Il
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.5
    • /
    • pp.569-576
    • /
    • 2011
  • In this paper a new analysis procedure for evaluation of progressive collapse resisting capacity of a structure was proposed based on the nonlinear static analysis procedure. The proposed procedure produces analysis results identical to those obtained by the linear static analysis procedure specified in the GSA guidelines without iteration, therefore saving a lot of computation time and excluding the possibility of human errors during the procedure. To verify the validity of the proposed procedure, the two methods were applied to the analysis of a reinforced concrete moment frame and a steel braced frame subjected to loss of a first story column and the results were compared. According to the analysis results, the two methods produce identical results in the prediction of progressive collapse and the hinge formation. As iterative analysis is not required in the proposed method, significant amount of analysis time is saved in the proposed analysis procedure.

Linear Analysis and Non-linear Analysis with Co-Rotational Formulation for a Cantilevered Beam under Static/Dynamic Tip Loads (정적 및 동적 하중을 받는 외팔보 거동에 관한 선형 및 CR 정식화 비선형 예측의 비교)

  • Ko, Jeong-Woo;Bin, Young-Bin;Eun, Won-Jong;Shin, Sang-Joon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.5
    • /
    • pp.467-475
    • /
    • 2015
  • In this paper, the behaviour of a cantilevered beam was predicted to examine the difference between linear and non-linear static, dynamic analysis for a structure by using CR nonlinear formulation. Then, external transverse static and dynamic loads were applied at the free tip of the beam. Classical theories were used for the present linear analysis and co-rotational dynamic FEM program was used for the present nonlinear analysis. In the static analysis, effects of the load for the beam deflection were observed in both linear and nonlinear analysis. Then, normalized displacement at the tip of the beam was predicted for different frequency ratio and a significant difference was obtained in the vicinity of the resonant frequency. In addition, effects of frequency and time for the beam deflection were investigated to find the frequency delay.

Effect of Nonlinear Analysis Procedures for Seismic Responses of Reinforced Concrete Wall Structure (철근콘크리트 벽체구조물의 지진응답에 대한 비선형 해석기법의 영향)

  • Song, Jong-Keol;Jang, Dong-Hui;Chung, Yeong-Hwa
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.4A
    • /
    • pp.659-675
    • /
    • 2006
  • Recently, significant progress has been made in performance-based engineering methods that rely mainly on nonlinear static seismic analysis procedures. The Capacity Spectrum Method (CSM) and the Displacement Coefficient Method (DCM) are the representative nonlinear static seismic analysis procedures. In order to evaluate the applicability of the procedures to the seismic evaluation and design process of new and existing structures, the accuracy of both CSM and DCM should be evaluated in advance. The accuracy of seismic responses by the nonlinear static procedures is evaluated in comparison with the shaking table test results for the structural wall specimen subjected to the far field and near field earthquakes. Also conducted are comparative studies where the shaking table test results are compared with those from nonlinear dynamic analysis procedures, i.e., Single-Degree-of-Freedom (SDOF), equivalent SDOF and Multi-Degree-of-Freedom (MDOF) systems.

Static Non-linear Finite Element Analysis of Spatial Cable Networks (3차원 케이블망의 초기평형상태 결정 및 정적 비선형 유한요소해석)

  • 김문영;김남일;안상섭
    • Computational Structural Engineering
    • /
    • v.11 no.1
    • /
    • pp.179-190
    • /
    • 1998
  • A geometrically nonlinear finite element formulation of spatial cable networks is presented using two cable elements. Firstly, derivation procedures of tangent stiffness and mass matrices for the space truss element and the elastic catenary cable element are summarized. The load incremental method based on Newton-Raphson iteration method and the dynamic relaxation method are presented in order to determine the initial static state of cable nets subjected to self-weights and support motions. Furthermore, static non-linear analysis of cable structures under additional live loads are performed based on the initial configuration. Challenging example problems are presented and discussed in order to demonstrate the feasibility of the present finite element method and investigate static nonlinear behaviors of cable nets.

  • PDF

Local Nonlinear Static Analysis via Static Condensation (강성응축기법을 이용한 국부 비선형 정적 해석)

  • Shin, Han-Seop;Oh, Min-Han;Boo, Seung-Hwan
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.1
    • /
    • pp.193-200
    • /
    • 2021
  • In this study, an analysis technique using static condensation is proposed for an efficient local nonlinear static analysis. The static condensation method is a model reduction method based on the degrees of freedom, and the analysis model is divided into a target part and a condensed part to be omitted. In this study, the nonlinear and linear parts were designated to the target and the omitted parts, respectively, and both the stiffness matrix and load vector corresponding to the linear part were condensed into the nonlinear part. After model condensation, the reduced model comprising the stiffness matrix and the load vector for the nonlinear part is constructed, and only this reduced model was updated through the Newton-Raphson iteration for an efficient nonlinear analysis. Finally, the efficiency and reliability of the proposed analysis technique were presented by applying it to various numerical examples.

Simplified seismic analysis of underground rectangular structures (박스 지하 구조물의 간편 내전해석)

  • Park, Inn-Joon;Park, Seong-Yong;Kim, Soo-Il;Kim, Sang-Hwan
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.7 no.3
    • /
    • pp.249-257
    • /
    • 2005
  • There are basically two methods for the seismic design of underground structures ; analytical or pseudo-static, and dynamical method. In pseudo-static analysis approach, the ground deformations are imposed as a static load and soil-structure interaction does not include dynamic or wave propagation effects. However the behavior of soil structure interaction is nonlinear, it needs to consider nonlinear soil-structure interaction effects. In this study simplified seismic analysis method to consider soil-structure interaction by iterative procedure is proposed and the results are compared and analyzed by a finite difference computer program.

  • PDF

Application of Energy Dissipation Capacity to Earthquake Design (내진 설계를 위한 에너지 소산량 산정법의 활용)

  • 임혜정;박홍근;엄태성
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.6
    • /
    • pp.109-117
    • /
    • 2003
  • Traditional nonlinear static and dynamic analyses do not accurately estimate the energy dissipation capacity of reinforced concrete structure. Recently, simple equations which can accurately calculate the energy dissipation capacity of flexure-dominated RC members, were developed in the companion study. In the present study, nonlinear static and dynamic analytical methods improved using the energy-evaluation method were developed. For nonlinear static analysis, the Capacity Spectrum Method was improved by using the energy-spectrum curve newly developed. For nonlinear dynamic analysis, a simplified energy-based cyclic model of reinforced concrete member was developed. Unlike the existing cyclic models which are the stiffness-based models, the proposed cyclic model can accurately estimate the energy dissipating during complete load-cycles. The procedure of the proposed methods was established and the computer program incorporating the analytical method was developed. The proposed analytical methods can estimate accurately the energy dissipation capacity varying with the design parameters such as shape of cross-section, reinforcement ratio and arrangement, and can address the effect of the energy dissipation capacity on the structural performance under earthquake load.