• Title/Summary/Keyword: 비선형 자기회귀

Search Result 53, Processing Time 0.03 seconds

Self-Recurrent Wavelet Neural Network Based Terminal Sliding Mode Control of Nonlinear Systems with Uncertainties (불확실성을 갖는 비선형 시스템의 자기 회귀 웨이블릿 신경망 기반 터미널 슬라이딩 모드 제어)

  • Lee, Sin-Ho;Choi, Yoon-Ho;Park, Jin-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2006.10c
    • /
    • pp.315-317
    • /
    • 2006
  • In this paper, we design a terminal sliding mode controller based on neural network for nonlinear systems with uncertainties. Terminal sliding mode control (TSMC) method can drive the tracking errors to zero within finite time. Also, TSMC has the advantages such as improved performance, robustness, reliability and precision by contrast with classical sliding mode control. For the control of nonlinear system with uncertainties, we employ the self-recurrent wavelet neural network(SRWNN) which is used for the prediction of uncertainties. The weights of SRWNN are trained by adaptive laws based on Lyapunov stability theorem. Finally, we carry out simulations to illustrate the effectiveness of the proposed control.

  • PDF

Self-Recurrent Wavelet Neural Network Observer Based Sliding Mode Control for Nonlinear Systems (자기 회귀 웨이블릿 신경 회로망 관측기 기반 비선형 시스템의 슬라이딩 모드 제어)

  • You, Sung-Jin;Choi, Yoon-Ho;Park, Jin-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2004.07d
    • /
    • pp.2236-2238
    • /
    • 2004
  • This paper proposes the self-recurrent wavelet neural network (SRWNN) observer based sliding mode control (SMC) method for nonlinear systems. Unlike the classical SMC, we assume that all states of nonlinear systems are not measured and design the SRWNN observer to measure the states of nonlinear systems. The SRWNN in the observer is used for approximating the observer system's gain. To generate the control input for controlling the nonlinear system, the measured states are used. The sliding surface with a boundary layer is defined to remove the chattering of the control input. Simulation result to show the effectiveness of the SRWNN observer is presented.

  • PDF

Estimation of the Spillovers during the Global Financial Crisis (글로벌 금융위기 동안 전이효과에 대한 추정)

  • Lee, Kyung-Hee;Kim, Kyung-Soo
    • Management & Information Systems Review
    • /
    • v.39 no.2
    • /
    • pp.17-37
    • /
    • 2020
  • The purpose of this study is to investigate the global spillover effects through the existence of linear and nonlinear causal relationships between the US, European and BRIC financial markets after the period from the introduction of the Euro, the financial crisis and the subsequent EU debt crisis in 2007~2010. Although the global spillover effects of the financial crisis are well described, the nature of the volatility effects and the spread mechanisms between the US, Europe and BRIC stock markets have not been systematically examined. A stepwise filtering methodology was introduced to investigate the dynamic linear and nonlinear causality, which included a vector autoregressive regression model and a multivariate GARCH model. The sample in this paper includes the post-Euro period, and also includes the financial crisis and the Eurozone financial and sovereign crisis. The empirical results can have many implications for the efficiency of the BRIC stock market. These results not only affect the predictability of this market, but can also be useful in future research to quantify the process of financial integration in the market. The interdependence between the United States, Europe and the BRIC can reveal significant implications for financial market regulation, hedging and trading strategies. And the findings show that the BRIC has been integrated internationally since the sub-prime and financial crisis erupted in the United States, and the spillover effects have become more specific and remarkable. Furthermore, there is no consistent evidence supporting the decoupling phenomenon. Some nonlinear causality persists even after filtering during the investigation period. Although the tail distribution dependence and higher moments may be significant factors for the remaining interdependencies, this can be largely explained by the simple volatility spillover effects in nonlinear causality.

Short-Term Water Demand Forecasting Algorithm Using AR Model and MLP (AR모델과 MLP를 이용한 단기 물 수요 예측 알고리즘 개발)

  • Choi, Gee-Seon;Yu, Chool;Jin, Ryuk-Min;Yu, Seong-Keun;Chun, Myung-Geun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.5
    • /
    • pp.713-719
    • /
    • 2009
  • In this paper, we develope a water demand forecasting algorithm using AR(Auto-regressive) and MLP(Multi-layer perceptron). To show effectiveness of the proposed method, we analyzed characteristics of time-series data collected in "A" purification plant at Jeon-Buk province during 2007-2008, and then performed the proposed method with various input factors selected through various analyses. As noted in experimental results, the performance of three types model such as multi-regressive, AR(Auto-regressive), and AR+MLP(Auto-regressive + Multi-layer perceptron) show 5.1%, 3.8%, and 3.6% with respect to MAPE(Mean Absolute Percentage Error), respectively. Thus, it is noted that the proposed method can be used to predict short-term water demand for the efficient operation of a water purification plant.

Application and Comparison of Dynamic Artificial Neural Networks for Urban Inundation Analysis (도시침수 해석을 위한 동적 인공신경망의 적용 및 비교)

  • Kim, Hyun Il;Keum, Ho Jun;Han, Kun Yeun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.38 no.5
    • /
    • pp.671-683
    • /
    • 2018
  • The flood damage caused by heavy rains in urban watershed is increasing, and, as evidenced by many previous studies, urban flooding usually exceeds the water capacity of drainage networks. The flood on the area which considerably urbanized and densely populated cause serious social and economic damage. To solve this problem, deterministic and probabilistic studies have been conducted for the prediction flooding in urban areas. However, it is insufficient to obtain lead times and to derive the prediction results for the flood volume in a short period of time. In this study, IDNN, TDNN and NARX were compared for real-time flood prediction based on urban runoff analysis to present the optimal real-time urban flood prediction technique. As a result of the flood prediction with rainfall event of 2010 and 2011 in Gangnam area, the Nash efficiency coefficient of the input delay artificial neural network, the time delay neural network and nonlinear autoregressive network with exogenous inputs are 0.86, 0.92, 0.99 and 0.53, 0.41, 0.98 respectively. Comparing with the result of the error analysis on the predicted result, it is revealed that the use of nonlinear autoregressive network with exogenous inputs must be appropriate for the establishment of urban flood response system in the future.

A Test for Nonlinear Causality and Its Application to Money, Production and Prices (통화(通貨)·생산(生産)·물가(物價)의 비선형인과관계(非線型因果關係) 검정(檢定))

  • Baek, Ehung-gi
    • KDI Journal of Economic Policy
    • /
    • v.13 no.4
    • /
    • pp.117-140
    • /
    • 1991
  • The purpose of this paper is primarily to introduce a nonparametric statistical tool developed by Baek and Brock to detect a unidirectional causal ordering between two economic variables and apply it to interesting macroeconomic relationships among money, production and prices. It can be applied to any other causal structure, for instance, defense spending and economic performance, stock market index and market interest rates etc. A key building block of the test for nonlinear Granger causality used in this paper is the correlation. The main emphasis is put on nonlinear causal structure rather than a linear one because the conventional F-test provides high power against the linear causal relationship. Based on asymptotic normality of our test statistic, the nonlinear causality test is finally derived. Size of the test is reported for some parameters. When it is applied to a money, production and prices model, some evidences of nonlinear causality are found by the corrected size of the test. For instance, nonlinear causal relationships between production and prices are demonstrated in both directions, however, these results were ignored by the conventional F-test. A similar results between money and prices are obtained at high lag variables.

  • PDF

How the Pattern Recognition Ability of Deep Learning Enhances Housing Price Estimation (딥러닝의 패턴 인식능력을 활용한 주택가격 추정)

  • Kim, Jinseok;Kim, Kyung-Min
    • Journal of the Economic Geographical Society of Korea
    • /
    • v.25 no.1
    • /
    • pp.183-201
    • /
    • 2022
  • Estimating the implicit value of housing assets is a very important task for participants in the housing market. Until now, such estimations were usually carried out using multiple regression analysis based on the inherent characteristics of the estate. However, in this paper, we examine the estimation capabilities of the Artificial Neural Network(ANN) and its 'Deep Learning' faculty. To make use of the strength of the neural network model, which allows the recognition of patterns in data by modeling non-linear and complex relationships between variables, this study utilizes geographic coordinates (i.e. longitudinal/latitudinal points) as the locational factor of housing prices. Specifically, we built a dataset including structural and spatiotemporal factors based on the hedonic price model and compared the estimation performance of the models with and without geographic coordinate variables. The results show that high estimation performance can be achieved in ANN by explaining the spatial effect on housing prices through the geographic location.

EMD based hybrid models to forecast the KOSPI (코스피 예측을 위한 EMD를 이용한 혼합 모형)

  • Kim, Hyowon;Seong, Byeongchan
    • The Korean Journal of Applied Statistics
    • /
    • v.29 no.3
    • /
    • pp.525-537
    • /
    • 2016
  • The paper considers a hybrid model to analyze and forecast time series data based on an empirical mode decomposition (EMD) that accommodates complex characteristics of time series such as nonstationarity and nonlinearity. We aggregate IMFs using the concept of cumulative energy to improve the interpretability of intrinsic mode functions (IMFs) from EMD. We forecast aggregated IMFs and residue with a hybrid model that combines the ARIMA model and an exponential smoothing method (ETS). The proposed method is applied to forecast KOSPI time series and is compared to traditional forecast models. Aggregated IMFs and residue provide a convenience to interpret the short, medium and long term dynamics of the KOSPI. It is also observed that the hybrid model with ARIMA and ETS is superior to traditional and other types of hybrid models.

바젤2 자산상관계수 계산공식의 현실성 검토: 중소기업 대출 포트폴리오를 대상으로

  • Gwon, Tae-Go;Jeong, Jae-Man;Jo, Tae-Geun
    • 한국산학경영학회:학술대회논문집
    • /
    • 2004.11a
    • /
    • pp.73-100
    • /
    • 2004
  • 본 연구는 기업은행은 1999년${\sim}$2003년 중소기업 대출 자료로 바젤2 자산상관계수 계산공식의 현실성을 검토하였다. 실증분석 결과에 따르면, 자산상관계수는 매출규모와는 양(+)의 관계를, 신용등급과는 음(-)의 관계를 갖는 것으로 나타나 바젤2 계산공식이 상정하고 있는 자산상관계수 패턴이 국내에서도 현실성이 있었다. 이는 자산상관계수가 매출규모와 음(-)의 관계를 보이는 것으로 보고한 Kim-Park(2004)과 상반되는 결과이다. 또한, 바젤2에서는 60억원 이하의 매출규모에 대해서는 60억원으로 간주하고 있지만, 매출규모 60억원 이하에서도 자산상관계수가 매출규모와 양(+)의 관계를 갖는 것으로 나타났다. 바젤2 계산공식에 의해 산출된 자산상관계수는 자료로 추정한 자산상관계수가 비해 1.3배${\sim}$19.2배 높으며, 이러한 차이는 통계적으로 유의할 뿐 만 아니라 경제적으로도 유의하다. 회귀분석 결과에 의하면, 바젤2 자산상관계수의 상향편의는 주로 계산공식에서 절편을 과도하게 높게 설정하였기 때문에 발생한 것으로 나타났으며, 바젤2에서는 매출규모와 자산상관계수간의 관계를 선형으로 설정하였지만, 로그선형이 실제 자료를 더 잘 적합시키는 것으로 나타났다. 이상의 결과로 보건대, 바젤2의 자산상관계수 계산공식은 비교적 현실적으로 고아된어져 있지만, 국내의 실정에 맞게 조정하기 위해서 보다 광범위한 실증분석이 필요한 것으로 판단된다.

  • PDF

A Study on the Prediction of the Nonlinear Chaotic Time Series Using a Self-Recurrent Wavelet Neural Network (자기 회귀 웨이블릿 신경 회로망을 이용한 비선형 혼돈 시계열의 예측에 관한 연구)

  • Lee, Hye-Jin;Park, Jin-Bae;Choi, Yoon-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2004.07d
    • /
    • pp.2209-2211
    • /
    • 2004
  • Unlike the wavelet neural network, since a mother wavelet layer of the self-recurrent wavelet neural network (SRWNN) is composed of self-feedback neurons, it has the ability to store past information of the wavelet. Therefore we propose the prediction method for the nonlinear chaotic time series model using a SRWNN. The SRWNN model is learned for the modeling of a function such that the inputs arc known values of the time series and the output is the value in the future. The parameters of the network are tuned to minimize the difference between the nonlinear mapping of the chaotic time series and the output of SRWNN using the gradient-descent method for the adaptive backpropagation algorithm. Through the computer simulations, we demonstrate the feasibility and the effectiveness of our method for the prediction of the logistic map and the Mackey-Glass delay-differential equation as a nonlinear chaotic time series.

  • PDF