• Title/Summary/Keyword: 비선형 연성

Search Result 255, Processing Time 0.027 seconds

Seismic Performance of Concrete-Filled Steel Piers Part I : Quasi-Static Cyclic Loading Test (강합성교각의 내진성능평가 Part I : 준정적 반복재하실험)

  • 조창빈;서진환;장승필
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.6 no.2
    • /
    • pp.9-19
    • /
    • 2002
  • Steel piers and concrete-filled steel(CFS) piers, in spite of reasonable strength, high ductility, small section, and fast construction, have not been considered as one of alternatives to RC piers even in the highly populated urban area where aseismic safety, limited space and fast construction are indispensably required. This paper, the first of two companion papers for the seismic performance of steel and CFS piers, tests steel and CFS piers under quasi-static cyclic loading to estimate their ductility and strength. Additional details such as rebars and base ribs are added to increase the ductility of a concrete-filled steel pier with minimum additional cost. Also, simplified numerical analyses using nonlinear spring and shell elements are examined for the estimation of the ductility and strength of concrete-filled steel piers and a steel pier. The result shows that concrete-filled steel peirs have higher energy absorption, i.e., ductility and strength than those of steel pier and increasing bonding between in-filled concrete and lower diaphragm, and the improved details of stress concentrated region would be important for the ductility and strength of a pier. Numerical results show that simplified modeling with nonlinear springs and shells has potential to be effective modeling technique to estimate the seismic performance of a concrete-filled steel pier.

Response Modification Factors of Inverted V-type Ordinary Concentrically Braced Frames (역V형 보통가새골조의 반응수정계수)

  • Kim, Jin-Koo;Nam, Kwang-Hee
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.8 no.3
    • /
    • pp.53-62
    • /
    • 2004
  • In this paper the overstrength factors, ductility factors, and response modification factors of ordinary concentric braced frames designed in accordance with a current seismic design code are determined by performing pushover analysis. According to the analysis results, the overstrength and the response modification factors turn out to be larger than the values regulated in the codes in most model structures. However if the braces are reinforced by BRB or zipper columns, the overstrength factors and response modification factors turn out to increase significantly.

Analysis of CFT Column-RC Flat Plate Interior Connections under Lateral Load (횡하중을 받는 CFT기둥-RC무량판 접합부의 해석연구)

  • Song, Jin-Kyu;Song, Ho-Bum;Oh, Sang-Won;Kim, Byung-Jo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.867-870
    • /
    • 2008
  • Flat plate system has many advantages, story height reduction, a term of works shortening and changeableness of space, etc. However structures become a tendency of higher stories and when we use RC column, the size of column grow larger. For this reason the use of CFT column is increasing more and more. Accordingly, this study carried out the nonlinear finite element analysis. As a result of analysis moment strength of the connection increased but ductility decreased as the top reinforcement ratio in th effective width increased. And moment strength and ductility of the connection decreased as gravity load ratio decreased. In the case that shearhead length is not more than 0.27m, the effectiveness of shearhead length on the moment strength and ductility of the connection were small relatively to other variables. Initial stiffness and moment strength of connection increased as slab thickness increased

  • PDF

Flexural Behavior and Analysis of RC Beams Strengthened with Prestressed CFRP Plates (프리스트레스트 탄소섬유판으로 보강된 철근콘크리트 보의 휨 거동 및 해석)

  • Yang, Dong-Suk;Park, Jun-Myung;You, Young-Chan;Park, Sun-Kyu
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.4
    • /
    • pp.467-474
    • /
    • 2007
  • In this paper, a total of 13 beams with bonding, anchorage system, amount of prestressing and span length as variables of experiment were tested in flexural test and analyzed in finite element analysis; one control beam, two simplified FRP-boned beams, four prestressed FRP-unbonded beams and four prestressed FRP-bonded beams. Also, a nonlinear finite element analysis of beams in the flexural test is performed by DIANA program considered material nonlinear of concrete, reinforcement and the interfacial bond-slip model between concrete and CFRP plates. The failure mode of prestressed CFRP plated-beams is not debonding but FRP rupture. RC members strengthened with external bonded prestressed CFRP plates occurred 1st and 2nd debonding of the composite material. After the debonding of CFRP plates occurs in bonded system, behavior of bonded CFRP-plated beams change into that of unbonded CFRP-plated beams due to fix of the anchorage system. Also, It was compared flexural test results and analytical results of RC members strengthened with CFRF plates. The ductility of beams strengthened by CFRP plates with the anchorage system is considered high with the ductility index of above 3. Analysis results showed a good agreement with experiment results in the debonding load, yield load and ultimate load.

Ductile Fracture Predictions of High Strength Steel (EH36) using Linear and Non-Linear Damage Evolution Models (선형 및 비선형 손상 발전 모델을 이용한 고장력강(EH36)의 연성 파단 예측)

  • Park, Sung-Ju;Park, Byoungjae;Choung, Joonmo
    • Journal of Ocean Engineering and Technology
    • /
    • v.31 no.4
    • /
    • pp.288-298
    • /
    • 2017
  • A study of the damage evolution laws for ductile materials was carried out to predict the ductile fracture behavior of a marine structural steel (EH36). We conducted proportional and non-proportional stress tests in the experiments. The existing 3-D fracture strain surface was newly calibrated using two fracture parameters: the average stress triaxiality and average normalized load angle taken from the proportional tests. Linear and non-linear damage evolution models were taken into account in this study. A damage exponent of 3.0 for the non-linear damage model was determined based on a simple optimization technique, for which proportional and non-proportional stress tests were simultaneously used. We verified the validity of the three fracture models: the newly calibrated fracture strain model, linear damage evolution model, and non-linear damage evolution model for the tensile tests of the asymmetric notch specimens. Because the stress evolution pattern for the verification tests remained at mode I in terms of the linear elastic fracture mechanics, the three models did not show significant differences in their fracture initiation predictions.

Structural Behavior of Reinforced Concrete Beams with Different Amounts of Reinforcing Steel and Carebon Fibre Sheet (탄소섬유쉬트보강된 철근콘크리트 보의 보강 철근비에 따른 구조적 거동)

  • 오용복;권영웅
    • Magazine of the Korea Concrete Institute
    • /
    • v.10 no.2
    • /
    • pp.119-126
    • /
    • 1998
  • 본 연구는 철근비와 보강판비를 조정한 보강철근비를 변수로 탄소섬유쉬트 접착된 철근콘크리트 보에 대하여 그 변형특성과 강도특성 및 파괴모드를 실험적으로 고찰한 것이다. 철근비와 보강판비가 증가할수록 최대내력은 증가하는 경향을 보이지만 탄소섬유쉬트의 겹수가 증가할수록 철근비 증가의 경우와는 달리 에너지흡수능력이 저하된다. 철근비와 보강판비에 따른 파괴모드를 구분하고 시험결과와 비교, 고찰하였던 바 파괴모드와 연성의 측면에서 보강철근비 е의 한계값을 0.87 max으로 제안하였다.탄소섬유쉬트와 철근콘크리트 보의 합성작용이 철근항복이후까지 유지되어 비선형적인 거동을 보임으로써 구조적거동이 양호하게 나타나는 것으로 입증되었다.

Form-finding of Free-form Membrane Structure based on Geometrically Non-linear Analysis and Interface method (기하학적 비선형해석을 이용한 비정형 막 구조물의 형상탐색과 인터페이스 기법)

  • Kim, Jee-In;Na, Yoo-Mi;Kang, Joo-Won;Lee, Jae-Hong
    • Journal of Korean Association for Spatial Structures
    • /
    • v.12 no.1
    • /
    • pp.77-85
    • /
    • 2012
  • The membrane structure maintains stable form by giving initial tension to ductile membrane and increasing the stiffness of exterior that is much adopted in the large span spatial structure by making its thickness thin. This kind of membrane structure has characteristic that can express free-form curve, so the selection of structural form is very important. So, this paper proposes the expression of free-form surface based on NURBS basis function and the finite element method considering geometrical nonlinearity for the deduction of large deformation result. Also, for minimizing the approximation of the surface that is derived from the form-finding result, the interface method that change finite element mesh to NURBS is proposed. So, the optimum surface of free-form membrane is derived.

Optimization of Direct Design System of Steel Framesusing Advanced Analysis and Genetic Algorithm (고등해석과 유전자 알고리즘을 이용한 강뼈대 구조물의 직접설계시스템의 최적화)

  • Choe, Se-Hyu;Roh, Woo-Hyuk;Kim, Jong-In;Park, Kyung-Sik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.5
    • /
    • pp.203-211
    • /
    • 2006
  • In this paper, the optimization of direct design system of steel frames by genetic algorithm involving advanced analysis are performed. For the analysis of steel frames advanced analysis accounting for geometric nonlinearity and material nonlinearity are executed. The genetic algorithm was used as optimization technique. The weight of structures is treated as the objective function. The constraint functions are defined by load-carrying capacities, deflections, inter-story drifts, and ductility requirement. The effectiveness of the proposed method are verified by comparing the results of the proposed method with those of other method.

Analytical Study on the Inelastic Behavior of Hollow Reinforced Concrete Bridge Columns under Varying Axial Load (변동 축하중을 받는 중공 철근콘크리트 교각의 비탄성거동에 관한 해석적 연구)

  • Kim, Tae-Hoon;Shin, Hyun-Mock
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.4 s.50
    • /
    • pp.35-44
    • /
    • 2006
  • The purpose of this study is to investigate the inelastic behavior of hollow reinforced concrete bridge columns under varying axial load. The role of the variable axial load is very important in the ductility, strength, stiffness, and energy dissipation. A computer program, named RCAHEST (Reinforced Concrete Analysis in Higher Evaluation System Technology), for the analysis of reinforced concrete structures was used. Material nonlinearity is taken into account by comprising tensile, compressive and shear models of cracked concrete and a model of reinforcing steel. The proposed numerical method for the inelastic behavior of hollow reinforced concrete bridge columns under varying axial load is verified by comparison with reliable experimental results.

Analytical Model to Predict Punching Shear Strength of Flat Plate Structures (플랫 플레이트의 뚫림전단 성능에 관한 해석적 연구)

  • Kim, Min-Sook;Lee, Young-Hak;Kim, Hee-Cheul
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2010.04a
    • /
    • pp.211-214
    • /
    • 2010
  • 플랫 플레이트 시스템은 기둥 주위의 국부적인 응력집중 현상으로 인한 뚫림전단 파괴에 대해 취약하다. 따라서 유한요소해석을 통해 이러한 플랫 플레이트 시스템의 뚫림전단 성능을 평가하고자 한다. 슬래브의 전단을 고려하기 위하여 Reissner-Mindlin 가정을 바탕으로 한 등매개변수 감절점 쉘 요소를 적용하였다. 콘크리트의 재료적 비선형 거동을 고려하기 위해 압축거동은 수정압축장 이론을 적용하였으며 인장강성효과 또한 콘크리트 재료모델에 반영하였다. 기존 실험결과와의 비교를 통해 타당성을 검증하고자 하였다. 비교 결과, 약 16%의 오차율을 보였으며 보강비가 낮은 실험체에 비해 보강비가 높은 실험체가 실험결과에 가까운 값을 예측하는 것으로 나타났다.

  • PDF