• Title/Summary/Keyword: 비선형 구조 해석

Search Result 1,879, Processing Time 0.031 seconds

Vibration Analysis of Composite Laminated Plates Considered in Material-Nonlinearity (재료비선형을 고려한 복합적층판의 진동해석)

  • Seok, Keun-Yung;Kang, Joo-Won;Shin, Young-Shik
    • Journal of Korean Association for Spatial Structures
    • /
    • v.6 no.4 s.22
    • /
    • pp.45-52
    • /
    • 2006
  • FRP laminated plates have strong material-nonlinearity. Through vibration Analysis of FRP laminated plates, the result of nonlinearity analysis is compared with the result of linearity analysis according to stacking angle and squency. This study is a fundamental study about displacement in nonlinearity dynamic behavior of FRP laminated plates.

  • PDF

Variational Approach for the Design Sensitivity Analysis of Geometrically Nonlinear Structures (변분법을 이용한 기하학적 비선형 구조의 설계민감도 해석)

  • Ryu, Yeon Sun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.10 no.2
    • /
    • pp.1-9
    • /
    • 1990
  • A variational approach with reference volume and adjoint structure concepts is applied for the structural design densitivity analysis of geometrically nonlinear structures. A general form of sensitivity equation is used and then nonlinear finite element procedure is implemented for the discretized structural model. Usability and effectiveness of the variational approach for the design sensitivity analysis of geometrically nonlinear structural responses are verified through a numerical example.

  • PDF

시스템공학연구소 보유 비선형 구조해석 S/W소개

  • 이재석
    • Computational Structural Engineering
    • /
    • v.4 no.3
    • /
    • pp.40-43
    • /
    • 1991
  • 한국과학기술연구원(KIST)부설 시스템공학연구소(SERI)가 보유하여 일반 사용자들에게 공개하고 있는 구조해석 S/W/로는 ABAQUS, ADINA, BOPACE-3D, DYNA-3D, MSC/NASTRAN, DIS/ADLPIPE, SAP5, KISTRAS, NONSAP, MARC 등을 들 수 있다. 이들 중 DIS/ADLPIPE, SAP5, KISTRAS, NONSAP은 CDC CYBER 960-31에 설치되어 있고 MARC는 NAS AS/XLV50에 설치되어 있으며 나머지는 CRAY-25 슈퍼컴퓨터에 설치되어 있다. 본 고에서는 이들 중에서 CRAY-2S 슈퍼컴퓨터에 설치되어 있으며 다양한 비선형 구조해석기능을 가지고 있는 ABAQUS, ADINA, MSC/NASTRAN 및 DYNA-3D에 대하여 개요, 기능 및 사용방법을 간략히 소개하고저 한다.

  • PDF

A Study on the Nonlinear Structural Analysis of Barrel Vault-Typed Membrane Roof Structures Considering the Orthotropic Material (직교이방성을 고려한 Barrel Vault형 지붕 막구조물의 비선형 구조해석에 관한 연구)

  • Kim, Seung-Deog;Jeong, Eul-Seok;Baek, In-Seong
    • Journal of Korean Association for Spatial Structures
    • /
    • v.5 no.1 s.15
    • /
    • pp.91-98
    • /
    • 2005
  • Membrane structures, a kind of lightweight soft structural system, are used for spatial structures. The material property of the membrane has strong axial stiffness, but little bending stiffness. Therefore membrane structures are unstable structures initially. These soft structures need to be introduced initial stresses first because of its initial unstable state, and it happens large deformation phenomenon. To find the structural shape after large deformation caused by initial stiffness introduced, we need the shape analysis considering geometric nonlinearity in structural design procedure In this study, we analyze the soft spatial structures by the NASS which is the program for nonlinear analysis. The analytic model is a roof membrane structures of Barrel Vault-Type. We have done the shape analysis and the stress-deformation analysis considering the orthotropic material, and then study the safety.

  • PDF

Nonlinear Dynamic Analysis of Reinforced Concrete Shells Using Layered Elements with Drilling DOF (회전자유도를 갖는 층상화 요소를 이용한 철근콘크리트 쉘구조의 비선형 동적해석)

  • 김태훈;이상국;신현목
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.5 no.6
    • /
    • pp.21-27
    • /
    • 2001
  • In this paper, a nonlinear finite element procedure is presented for the dynamic analysis of reinforced concrete shells. A computer program, named RCAHEST(reinforced concrete analysis in higher evaluation system technology), for the analysis of reinforced concrete structures was used. A 4-node flat shell element will drilling rotational stiffness is used for spatial discretization. The layered approach is used to discretize behavior of concrete and reinforcement through the thickness. Material nonlinearity is taken into account by comprising tensile, compressive and shear models of cracked concrete and a model of reinforcing steel. The smeared crack approach is incorporated. Solution of the equations of motion is obtained by numerical integration using Hilber-Hughes-Taylor(HHT) algorithm. The proposed numerical method for the nonlinear dynamic analysis of reinforced concrete shells is verified by comparison with reliable analytical results.

  • PDF

Effect of Nonlinear Analysis Procedures for Seismic Responses of Reinforced Concrete Wall Structure (철근콘크리트 벽체구조물의 지진응답에 대한 비선형 해석기법의 영향)

  • Song, Jong-Keol;Jang, Dong-Hui;Chung, Yeong-Hwa
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.4A
    • /
    • pp.659-675
    • /
    • 2006
  • Recently, significant progress has been made in performance-based engineering methods that rely mainly on nonlinear static seismic analysis procedures. The Capacity Spectrum Method (CSM) and the Displacement Coefficient Method (DCM) are the representative nonlinear static seismic analysis procedures. In order to evaluate the applicability of the procedures to the seismic evaluation and design process of new and existing structures, the accuracy of both CSM and DCM should be evaluated in advance. The accuracy of seismic responses by the nonlinear static procedures is evaluated in comparison with the shaking table test results for the structural wall specimen subjected to the far field and near field earthquakes. Also conducted are comparative studies where the shaking table test results are compared with those from nonlinear dynamic analysis procedures, i.e., Single-Degree-of-Freedom (SDOF), equivalent SDOF and Multi-Degree-of-Freedom (MDOF) systems.

Parameter Identification and Nonlinear Seismic Analysis of Soil-Structure Interaction System (지반-구조물 상호작용계의 강성계수추정 및 비선형지진해석)

  • 윤정방;최준성;김재민;김문수
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.1 no.1
    • /
    • pp.41-49
    • /
    • 1997
  • This paper presents the result of an international cooperative research on the post-correlation analysis of forced vibration tests and the prediction of earthquake responses of a large-scale seismic test structure. The dynamic analysis is carried out using the axisymmetric finite element method incorporating in finite elements for the for field soil region. Through the post-correlation analysis, the properties of the soil layers are revised so that the best correlation in the responses may be obtained compared with the measured force vibration test data. Utilizing the revised soil properties as the initial linear values, the seismic responses are predicted for an earthquake using the equivalent linearlization technique. It has been found that the predicted responses by the equivalent nonlinear procedure are in excellent agreement with the observed responses, while those using the linear properties are fairly off from the measured results.

  • PDF

Embedment Effect of Foundation on the Response of Base-Isolated NPP Structure (기초의 묻힘이 면진 원전구조물의 지진응답에 미치는 효과)

  • Lee, Eun-Haeng;Kim, Jae-Min;Lee, Sang-Hoon;Kim, Jae-Hee
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.5
    • /
    • pp.377-388
    • /
    • 2016
  • This study is aimed to evaluate the embedment effect of foundation as compared to the surface foundation on the response of a base-isolated nuclear power plant structure. For this purpose, the boundary reaction method (BRM), which is a two-step frequency domain and time domain technique, is used for the nonlinear SSI analysis considering nonlinear behavior of base isolators. The numerical model of the BRM is verified by comparing the numerical results obtained by the BRM and the conventional frequency-domain SSI analysis for an equivalent linear SSI system. Finally, the displacement response of the base isolation and the horizontal response of the structure obtained by the nonlinear SSI analysis using the moat foundation model are compared with those using the surface foundation model. The comparison showed that the displacement response of the base isolation can be reduced by considering the embedment effect of foundation.

Non-Linear Behavior Analysis for Stratospheric Airship Envelope (성층권 비행선 기낭 막재료에 대한 비선형 거동 연구)

  • Suh Young Wook;Woo Kyeongsik
    • Composites Research
    • /
    • v.18 no.2
    • /
    • pp.30-37
    • /
    • 2005
  • In this paper, geometrically non-linear finite element analyses were performed to study the mechanical behavior of the material system of the envelope of stratospheric airships. The microstructure of the load-bearing plain weave layer was identified and modeled. The Updated Lagrangian formulation was employed to consider the geometric non-linearity as well as the induced structural non-linearity for the fiber tows. The stress-strain behavior was predicted and the effective elastic modulus was calculated by numerical experiments. It was found the non-linear stress-strain curves were largely different from those by linear analysis. And non-linear elastic moduli were much higher than linear elastic moduli. The difference was more distinguishable when the tow waviness ratio was smaller.

Advanced analysis and optimal design of space steel frames accounting for nonlinear behavior of connections (접합부의 비선형 거동을 고려한 공간 강뼈대 구조물의 고등해석과 최적설계)

  • Choi, Se Hyu
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.5 s.72
    • /
    • pp.683-694
    • /
    • 2004
  • Advanced analysis and optimal design of semi-rigid space steel frames were presented. The advanced analysis can predict the combined nonlinear effects of connection, geometry, and material on the behavior and strength of semi-rigid frames. The Kishi-Chen power model was used to describe the nonlinear behavior of semi-rigid connections. Geometric nonlinearity was determined using stability functions. Material nonlinearity was determined using the Column Research Council (CRC) tangent modulus and the parabolic function. The direct search method proposed by Choi and Kim was used as optimization technique. One by one, the member with the largest unit value evaluated using the LRFD interaction equation were placed adjacent to a larger member selected from the database. The objective function was assumed to be the weight of steel frame, while the constraint functions were load-carrying capacities, deflections, inter-story drifts, and the ductility requirements. The member sizes determined using the proposed method were compared to those derived from the conventional LRFD method.