• Title/Summary/Keyword: 비선형파이론

Search Result 131, Processing Time 0.029 seconds

A Study of the Characteristics and Mechanism of Giant wave Appearance (대양에서의 거대파랑 출현 특성과 기구에 관한 연구)

  • Shin Seung-Ho;Hong Keyyong
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2005.10a
    • /
    • pp.147-152
    • /
    • 2005
  • 선형파 이론에 의한 파랑스펙트럼 분포에 의해서는 30m 크기의 파랑은 현실적으로 거의 발생 불가능하다고 인식되어 왔다. 그러나 최근의 위성 영상을 이용한 조사에 의해 3주간의 기간 통안 25m 이상의 거대파가 10개 이상 관측됨에 따라 실해역에서 빈번히 마주칠 수 있는 현상임이 입증되었으며 이에 따라 지금까지 이유 불명으로 치부되어 왔던 많은 해양 재난이 거대파에 의해 발생했던 것으로 추정되고 있다. 거대파의 발생원인은 파군 형성과 관련한 파고분포 특성의 변화, 전파하는 파군의 비선형 공명간섭 통이 제기되고 있으나, 그 출현의 복잡성과 자료의 부족 등으로 아직 명확하게 해명되지 못하고 있다. 본 연구에서는 실해역에서 발생하는 거대파의 특성 및 선형 및 비선형이론에 근거한 거대파 발생 기구를 고찰하고 비선형 파랑전파를 모사할 수 있는 수치모형을 개발하였다.

  • PDF

Acoustic Nonlinearity of Surface Wave and Experimental Verification of Characteristics (표면파의 음향 비선형성과 실험적 특성 검증)

  • Lee, Jae-Ik;Kwon, Goo-Do;Lee, Tae-Hun;Jhang, Kyung-Young
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.4
    • /
    • pp.344-350
    • /
    • 2009
  • The goal of this study is to introduce the theoretical background of acoustic nonlinearity in surface wave and to verify its characteristics by experiments. It has been known by theory that the nonlinear parameter of surface wave is proportional to the ratio of $2^{nd}$ harmonic amplitude and the power of primary component in the propagated surface wave, as like as in bulk waves. In this paper, in order to verify this characteristics we constructed a measurement system using contact angle beam transducers and measured the nonlinear parameter of surface wave in an Aluminum 6061 alloy block specimen while changing the distance of wave propagation and the input amplitude. We also considered the effect of frequency-dependent attenuation to the measurement of nonlinear parameter. Results showed good agreement with the theoretical expectation that the nonlinear parameter should be independent on the input amplitude and linearly dependent on the input amplitude and the $2^{nd}$ harmonic amplitude is linearly dependant on the propagation distance.

A Study of the Appearance Characteristics and Generation Mechanism of Giant Waves (대양에서의 거대파랑 출현 특성과 발생 기구에 관한 연구)

  • Shin Seung-Ho;Hong Key-Yong
    • Journal of Navigation and Port Research
    • /
    • v.30 no.3 s.109
    • /
    • pp.181-187
    • /
    • 2006
  • In the wave spectrum distribution based on linear wave theory, the appearance of a giant wave whose wave height reaches to 30m has been considered next to almost impossible in a real sea However since more than 10 giant waves were observed in a recent investigation of global wave distribution which was carried out by the analysis of SAR imagines for three weeks, the existence of the giant waves is being recognized and it is considered the cause of many unknown marine disasters. The change of wave height distribution concerning a formation of wave train, nonlinear wave to wave interaction and so on were raised as the causes of the appearance of the giant waves, but the occurrence mechanism of the giant waves hasn't been cleared yet. In present study, we investigated appearance circumstances of the giant waves in real sea and its occurrence mechanism was analyzed based on linear and nonlinear wave focusing theories. Also, through a development of numerical model of the nonlinear $schr\"{o}dinger$ equation, the formations of the giant wave from progressive wave train were reproduced.

Characteristics of the Group-Bounded Long Wave (파군에 따른 장주기파의 거동특성)

  • 이철응;이길성
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.6 no.1
    • /
    • pp.61-71
    • /
    • 1994
  • A modified method obtained by expanding Longuet-Higgins and Stewart's method (1964) is proposed. which can easily derive the group-bountied long wave due to the irregular were group as well as the regular wave group. The result of the proposed method agree well with those of both second order nonlinear theory and radiation stress theory. Particularly in the shallow water region, three equations from the proposed method, the second order nonlinear theory and the radiation stress theory become identical.

  • PDF

Feasibility Study on Diagnosis of Material Damage Using Bulk Wave Mixing Technique (체적파 혼합기법을 이용한 재료 손상 진단 적용 가능성 연구)

  • Choi, Jeongseok;Cho, Younho
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.36 no.1
    • /
    • pp.53-59
    • /
    • 2016
  • Ultrasonic nonlinear evaluation is generally utilized for detection of not only defects but also microdamage such as corrosion and plastic deformation. Nonlinearity is determined by the amplitude ratio of primary wave second harmonic wave, and the results of its comparison are used for evaluation. Owing to the experimental features, the experimental nonlinearity result contains system nonlinearity and material nonlinearity. System nonlinearity is that which is unwanted by the user; hence, it acts as an error and interrupts analysis. In this study, a bulk wave mixing technique is implemented in order to minimize the system nonlinearity and obtain the reliable analysis results. The biggest advantage of this technique is that experimental nonlinearity contains less system nonlinearity than that for the conventional nonlinear ultrasonic technique. Theoretical and experimental verifications are performed in this study. By comparing the results of the bulk wave mixing technique with those of the conventional technique, the strengths, weaknesses, and application validity of the bulk wave mixing technique are determined.

Lamb Wave Technique for Ultrasonic Nonlinear Characterization in Elastic Plates (판재의 초음파 비선형 특성평가를 위한 Lamb Wave 기법)

  • Lee, Tae-Hun;Kim, Chung-Seok;Jhang, Kyung-Young
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.30 no.5
    • /
    • pp.458-463
    • /
    • 2010
  • Since the acoustic nonlinearity is sensitive to the minute variation of material properties, the nonlinear ultrasonic technique(NUT) has been considered as a promising method to evaluate the material degradation or fatigue. However, there are certain limitations to apply the conventional NUT using the bulk wave to thin plates. In case of plates, the use of Lamb wave can be considered, however, the propagation characteristics of Lamb wave are completely different with the bulk wave, and thus the separate study for the nonlinearity of Lamb wave is required. For this work, this paper analyzed first the conditions of mode pair suitable for the practical application as well as for the cumulative propagation of quadratic harmonic frequency and summarized the result in for conditions; (1) phase matching, (2) non-zero power flux, (3) group velocity matching, and (4) non-zero out-of-plane displacement. Experimental results in aluminum plates showed that the amplitude of the secondary Lamb wave and nonlinear parameter growed up with increasing propagation distance at the mode pair satisfying the above all conditions and that the ration of nonlinear parameters measured in Al6061-T6 and Al1100-H15 was closed to the ratio of the absolute nonlinear parameters.

Investigation of Importance of Evanescent Modes in Predicting the Transformation of Water Waves by the Linear Wave Theory: 2. Numerical Experiments (선형파 이론에 의한 파랑변형 예측시 소멸파 성분의 중요성 검토 2. 수치 실험)

  • 이창훈;조대희;조용식
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.15 no.1
    • /
    • pp.51-58
    • /
    • 2003
  • The magnitude of evanescent modes in terms of dynamics it investigated in case that the transformation of water waves is predicted by the linear wave theory. For the waves propagating over two steps, the eigenfunction expansion method is used to predict the amplitudes of reflected and transmitted waves by the component of evanescent modes as well as propagating modes. Then. the relative importance of evanescent modes to the propagating modes is investigated. The numerical experiments find that the evanescent modes are pronounced at the relative water depth of k$_1$h$_1$=0.11$\pi$ and the water depth ratio of h$_2$/h$_1$ close to zero.

Computation of the Linear and Nonlinear Hydrodynamic Forces on Slender Ships with Zero Speed in Waves : Infinite-Depth Case (정지 세장선의 파랑 중 선형 및 비선형 유체력 계산 : 무한 수심의 경우)

  • Yong-Hwan Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.37 no.2
    • /
    • pp.1-13
    • /
    • 2000
  • In the present paper, an infinite-depth unified theory is applied to the computation of the linear and second-order hydrodynamic forces on slender bodies. No forward speed is assumed, which is valid for some types of ships, like FPSOs and shuttle tankers. Strip theory solution, which is essential for the extension to theory is extended to unified theory, was obtained using NIIRD program developed at MIT. The linear theory is extended to the computation of the second-order mean-drift forces and moment. Furthermore, Aranha's formular is applied to the prediction of wave drift damping coefficients. From this study, it is proved that unified theory provides an accuracy comparable with 3D panel method for the second-order forces as well as the linear solution with much less computational effort.

  • PDF

Spectra of nonlinear shallow water waves (비선형 천해파의 스펙트라)

  • Zahibo, Narcisse;Didenkulova, Ira;Pelinovsky, Efim
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.19 no.4
    • /
    • pp.355-360
    • /
    • 2007
  • The process of the nonlinear shallow water wave transformation in a basin of a constant depth is studied. Characteristics of the first breaking of the wave are analyzed in details. The Fourier spectrum and steepness of the nonlinear wave are calculated. It is shown that the spectral amplitudes can be expressed using the wave front steepness, which allows the practical estimations.

Bending Fatigue Characterization of Al6061 Alloy by Acoustic Nonlinearity of Narrow Band Laser-Generated Surface Wave (협대역 레이저 여기 표면파의 음향버선형성을 이용한 A16061 합금의 굽힘피로손상 평가)

  • Nam, Tae-Hyung;Choi, Sung-Ho;Jhang, Kyung-Young;Kim, Chung-Seok;Lee, Tae-Hun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.30 no.2
    • /
    • pp.139-145
    • /
    • 2010
  • Bending fatigue of aluminium alloy was characterized by acoustic nonlinearity of narrow band laser-generated surface wave. The higher harmonic components generated intrinsically by arrayed line laser beam were analyzed theoretically and acoustic nonlinearity was measured successfully on the surface of fatigue damaged aluminium 6061 alloy. The acoustic nonlinearity increased as a function of fatigue cycles and has close relation with damage level. Consequently, the nonlinear acoustic technique of laser-generated surface wave could be potential to characterize surface damages subjected to fatigue.