• Title/Summary/Keyword: 비선형진동

Search Result 602, Processing Time 0.027 seconds

Nonlinear Dynamic Modeling and Stability Analysis of an Axially Oscillating Cantilever Beam with a Concentrated Mass (축방향 왕복 운동을 하는 집중 질량을 가진 외팔보의 비선형 동적 모델링 및 안정성 해석)

  • 홍정환;유홍희
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.11
    • /
    • pp.868-874
    • /
    • 2003
  • A nonlinear modeling method for an axially oscillating cantilever beam with a concentrated mass is presented in this paper. Hybrid deformation variables are employed for the modeling method with which frequency response characteristics of axially oscillating cantilever beams are investigated. The geometric nonlinear effects of stretching and curvature are considered to accurately predict the frequency response characteristics of the oscillating cantilever beam. The effects of the size and the location of the concentrated mass on the frequency characteristics are investigated. It is found that the dynamic instability is significantly influenced by the two parameters.

Nonlinear Dynamic Response of Cantilevered Carbon Nanotube Resonator by Electrostatic Excitation (정전기력 가진에 의한 외팔보형 탄소나노튜브 공진기의 비선형 동적 응답)

  • Kim, Il-Kwang;Lee, Soo-Il
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.9
    • /
    • pp.813-819
    • /
    • 2011
  • This paper predicted nonlinear dynamic responses of a cantilevered carbon nanotube(CNT) resonator incorporating the electrostatic forces and van der Waals interactions between the CNT cantilever and ground plane. The structural model of CNT includes geometric and inertial nonlinearities to investigate various phenomena of nonlinear responses of the CNT due to the electrostatic excitation. In order to solve this problem, we used Galerkin's approximation and the numerical integration techniques. As a result, the CNT nano-resonator shows the softening effect through saddle-node bifurcation near primary resonance frequency with increasing the applied AC and DC voltages. Also we can predict nonlinear secondary resonances such as superharmonic and subharmonic resonances. The superharmonic resonance of the nano-resonator is influenced by applied AC voltage. The period-doubling bifurcation leads to the subharmonic resonance which occurs when the nano-resonator is actuated by electrostatic forces as parametric excitation.

Phase Change for One to One Resonance of Nonlinear Cantilever Beam (비선형 외팔보의 일대일 공진에서의 위상변화)

  • Kim, Myoung-Gu;Pak, Chul-Hui;Cho, Chong-Du;Cho, Ho-Joon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.703-708
    • /
    • 2006
  • The cantilever beam with nonlinearity has many dynamic characteristics of nonlinear vibration. Nonlinear terms of a flexible cantilever beam include inertia, spring, damping, and warping. When the beam is given basic harmonic excitation, it shows planar and nonplanar vibrations due to one-to-one resonance. And when the one-to-one resonance occurs, the flexible beam shows different behaviors in those vibrations. For the one-to-one resonance occurring in each mode, the phase value of the planar vibration is different from that of the nonlinear vibration. This paper investigates the phase change and the phase difference between such planar and nonplanar vibrations which are caused by one-to-one resonance.

  • PDF

A Study on the Forced Torsional Vibration of Engines Shafting Systems with Non-linear Elastic Couplings (비선형 탄성커플링을 갖는 기관축계의 비틀림강제진동에 관한 연구)

  • 박용남
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.3
    • /
    • pp.328-336
    • /
    • 1998
  • Marine reduction gears are usually used to increase the propulsion efficiency of propellers for ships powered by medium and small sized high speed diesel engines. Most of shaft systems adopt flexible couplings to absorb the transmitted vibratory torque from the engines to the reduction gears and to prevent the chattering phenomenon of reduction gears. However some elastic couplings show non-linear characteristics due to the variable torque transmitted from the main engines and the change of ambient temperature. In this study dynamic characteristics of flexible couplings sare investigated and their effects upon various vibratory conditions of propulsion systems are clarified. A calculation program of torsional vibration for the propulsion systems are clarified. A calculation program of Results of the program developed are compared with ones of the existing linear method and propulsion systems with the elastic couplings the transfer matrix method is adopted which is found to give satisfied results.

  • PDF

Nonlinear Analysis of Gear Drive System due to Misalignment (정렬불량에 의한 기어 구동계 비선형 해석)

  • Lee, B.H.;Choi, Y.S.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.31-36
    • /
    • 2002
  • Even through the problem of misalignment is of great importance, not much work has been reported in the literature on the effect of misalignment on the vibrations of the gear-bearing systems. Therefore, the nonlinear dynamic characteristics of the gear drive system due to misalignment are investigated in this work. Transmission error for helical gear and bearing nonlinear stiffness is calculated. The equation of motion of the gear drive system is modelled using the time-varying gear meshing stiffness, bearing nonlinear stiffness, and bearing pre-load due to the housing deformation. Numerical analysis lot the gear drive system show the result of misalignment effect - sub-harmonic component, bearing pre-load effect, and another nonlinear phenomenon. And the numerical analysis are verified by the experimental result.

  • PDF

Nonlinear Modeling Employing Hybrid Deformation Variables and Frequency Response Characteristics of a Cantilever Beam Undergoing Axially Oscillating Motion (축 방향 왕복운동을 하는 외팔보의 복합변형변수를 이용한 비선형 모델링 및 주파수 응답특성)

  • Kim, Na-Eun;Hyun, Sang-Hak;Yoo, Hong-Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.262-267
    • /
    • 2002
  • A nonlinear dynamic modeling method for cantilever beams undergoing axially oscillating motion is presented in this paper. Hybrid deformation variables are employed for the modeling method with which frequency response characteristics of a axially oscillating cantilever beams are investigated. It is shown that the geometric nonlinear effects of stretching and curvature play important roles to accurately predict the frequency response characteristics. The effects of the amplitude and the damping constant on the frequency characteristics are also exhibited.

  • PDF

Nonlinear Stability Characteristics of Carbon Nanotubes (탄소나노튜브의 비선형 안정성 해석)

  • Choi, Jong-Woon;Song, Oh-Seop
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.7
    • /
    • pp.699-709
    • /
    • 2009
  • In this paper, the nonlinear dynamics and the stability of nanopipes conveying fluid and modelled as a thin-walled beam is investigated. Effects of boundary conditions, geometric nonlinearity, non-classical transverse shear and rotary inertia are incorporated in this study. The governing equations and the three different boundary conditions are derived through Hamilton's principle. Numerical analysis is performed by using extend Galerkin method which enables us to obtain more exact solutions compared with conventional Galerkin method. Variations of critical flow velocity for different boundary conditions of carbon nanopipes are investigated and compared with linear case.

Development of Active Vibration Isolation System for Display Equipments

  • Im, Gyeong-Hwa;Yang, Son;An, Chae-Heon;Jin, Gyeong-Bok
    • Proceedings of the Korean Society Of Semiconductor Equipment Technology
    • /
    • 2007.06a
    • /
    • pp.132-138
    • /
    • 2007
  • 최근 반도체 및 디스플레이 산업 등에서 초정밀 가공, 측정 등이 필요함에 따라, 외란과 내부 진동을 차단하는 방진 시스템에 대한 연구가 활성화 되고 있다. 기존에 소개된 여러 방진 시스템 중에서 가장 많이 연구되는 공기스프링은 압축 공기를 이용하여 큰 하중을 지지할 수 있으면서 상대적으로 낮은 강성으로 낮은 고유진동수를 유지할 수 있다. 본 연구는 기존의 레벨링밸브를 이용한 수동 방진 시스템을 분석하여 이를 개선하고 디스플레이장비용 능동 방진 시스템을 설계하였다. 공기의 비선형 특성에 기인하는 복잡한 비선형 시스템 제어에 PID 제어기 보다 유리한 퍼지 제어기를 설계하였고, 실험과 해석을 비교하였다.

  • PDF

On the Computer Simulation for the Third Integral and an Application of the Poincare Map in Hamiltonian System (Hamiltonian 비선형계의 기하학적 연구와 제3의 운동상수 응용)

  • 박철희;문용찬
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.1
    • /
    • pp.170-180
    • /
    • 1986
  • 본 연구에서는 2자유도 Hamiltonian 운동계에서 비선형 정규모우드(normal mode)들의 안정성을 예측하기 위한 제3의 운동상수를 선형계의 진동수비가 1:1이고 포텐셜이 4차항까지 우함수인 일반계에 적용하여 발전시켰다. 이는 Hamiltonian을 정규모우드로 바꾸는 B-G변환과 함수들을 부호처리함과 Poincare map을 이용하다. 비선형계에서 비선형상수에 따라 모우드가 bifurcate되며, 각각의 모우드 안정성은 제3의 운동상수와 Poincare map으로 정확히 판정할 수 있다는 결론을 얻었다.

Nonlinear Modeling Employing Hybrid Deformation Variables and Frequency Response Characteristics of a Cantilever Beam Undergoing Axially Oscillating Motion (축방향 왕복운동을 하는 외팔보의 복합변형변수를 이용한 비선형 모델링 및 주파수 응답특성)

  • Kim, Na-Eun;Hyun, Sang-Hak;Yoo, Hong-Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.331.2-331
    • /
    • 2002
  • A modeling method for cantilever beams undergoing axially oscillating motion is presented in this paper. Hybrid deformation variables are employed for the modeling method. Frequency response characteristics are investigated with the modeling method. It is shown that the geometric nonlinear effects of stretching and curvature play important roles to accurately predict the dynamic response. (omitted)

  • PDF