• Title/Summary/Keyword: 비선형계획

Search Result 171, Processing Time 0.034 seconds

Development of an Automated Aero-Structure Interaction System for Multidisciplinary Design Optimization for the Large AR Aircraft Wing (가로세로비가 큰 항공기 날개의 다분야 통합 최적설계를 위한 자동화 공력-구조 연계 시스템 개발)

  • Jo, Dae-Sik;Yoo, Jae-Hoon;Joh, Chang-Yeol;Park, Chan-Woo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.7
    • /
    • pp.716-726
    • /
    • 2010
  • In this research, design optimization of an aircraft wing has been performed using the fully automated Multidisciplinary Design Optimization (MDO) framework, which integrates aerodynamic and structural analysis considering nonlinear structural behavior. A computational fluid dynamics (CFD) mesh is generated automatically from parametric modeling using CATIA and Gambit, followed by an automatic flow analysis using FLUENT. A computational structure mechanics (CSM) mesh is generated automatically by the parametric method of the CATIA and visual basic script of NASTRAN-FX. The structure is analyzed by ABAQUS. Interaction between CFD and CSM is performed by a fully automated system. The Response Surface Method (RSM) is applied for optimization, helping to achieve the global optimum. The optimization design result demonstrates successful application of the fully automated MDO framework.

Development of Elastic Shaft Alignment Design Program (선체변형을 고려한 탄성 축계정렬 설계 프로그램 개발)

  • Choung Joon-Mo;Choe Ick-Heung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.43 no.4 s.148
    • /
    • pp.512-520
    • /
    • 2006
  • The effects of flexibilities of supporting structures on shaft alignment are growing as ship sizes are Increasing mainly for container carrier and LNG carrier. But, most of classification societies not only do not suggest any quantitative guidelines about the flexibilities but also do not have shaft alignment design program considering the flexibility of supporting structures. A newly developed program, which is based on innovative shaft alignment technologies including nonlinear elastic multi-support bearing concept and hull deflection database approach, has S basic modules : 1)fully automated finite element generation module, 2) hull deflection database and it's mapping module on bearings, 3) squeezing and oil film pressure calculation module, 4) optimization module and 5) gap & sag calculation module. First module can generate finite element model including shafts, bearings, bearing seats, hull and engine housing without any misalignment of nodes. Hull deflection database module has built-in absolute deflection data for various ship types, sizes and loading conditions and imposes the transformed relative deflection data on shafting system. The squeezing of lining material and oil film pressures, which are relatively solved by Hertz contact theory and built-in hydrodynamic engine, can be calculated and visualized by pressure calculation module. One of the most representative capabilities is an optimization module based on both DOE and Hooke-Jeeves algorithm.

Splice Length of GFRP Rebars Based on Flexural Tests of Unconfined RC Members (RC 부재 휨 실험에 의한 GFRP 보강근의 이음길이 제안)

  • Choi, Dong-Uk;Chun, Sung-Chul;Ha, Sang-Su
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.1
    • /
    • pp.65-74
    • /
    • 2009
  • Glass fiber reinforced polymer (GFRP) bars are sometimes used when corrosion of conventional reinforcing steel bar is of concern. In this study, a total of 36 beams and one-way slabs reinforced using GFRP bars were tested in flexure. Four different GFRP bars of 13 mm diameter were used in the test program. In most test specimens, the GFRP bars were lap spliced at center. All beams and slabs were tested under 4-point loads so that the spliced region be subject to constant moment. Test variables were splice lengths, cover thicknesses, and bar spacings. No stirrups were used in the spliced region so that the tests result in conservative bond strengths. Average bond stresses that develop between GFRP bars and concrete were determined through nonlinear analysis of the cross-sections. An average bond stress prediction equation was derived utilizing two-variable linear regression. A splice length equation based on 5% fractile concept was then developed. As a result of this study, a rational equation with which design splice lengths of the GFRP bars can be determined, was proposed.

An Analysis of Characteristics for the Non-catalytic Esterification of Palm Fatty Acid Distillate (PFAD) (팜지방산 디스틸레이트의 무촉매 에스테르화 반응특성 연구)

  • Hong, Seok Won;Cho, Hyun Jun;Yeo, Yeong-Koo
    • Korean Chemical Engineering Research
    • /
    • v.52 no.3
    • /
    • pp.395-401
    • /
    • 2014
  • In this work, the reaction characteristics for the non-catalytic esterification of palm fatty acid distillate were analyzed. The esterification reaction was assumed as the pseudo homogeneous $2^{nd}$ order reversible reaction and 'reaction effectiveness factor (${\eta}$)' was used to take accounts into evaporation and reaction of water and methanol, which take place simultaneously in the liquid phase. The nonlinear programming was used to derive appropriate kinetic parameters, the reaction rate constant and mass transfer coefficient, minimizing the error between experimental data and the numerical values. Based on these parameters, the apparent activation energy was calculated to be 43.98 kJ/mol.

Parameter Estimation of 2-DOF Dynamic System using Particle Filter (파티클 필터를 이용한 2 자유도 동역학 시스템의 파라미터 추정)

  • Kim, Tae-Yeong;Chong, Kil-To
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.49 no.2
    • /
    • pp.10-16
    • /
    • 2012
  • Currently, the majority of systems which are non-linear are in need of the correct system equations for controlling and monitoring. Therefore, the correct estimation of parameters is crucial. Generally, parameters are changed due to system deterioration or sudden environmental alterations. Given the limitations of system monitoring unstable controls can arise. In the following paper, the parameter estimation method is proposed using software filters to combat these system instabilities. For dynamic instances, a powerful particle filter is used to control the nonlinear and noisy environments in which they take place. Using a setup simulation comprised of a slider and pendulum, the state variable of noise is obtained. After collecting the data, the proposed algorithm is used to estimate both the state variable and its parameters. Finally, these results are checked with correct parameter estimations to evaluate and verify the algorithms performance.

A Study on Developing an Optimization Model for Particleboard Manufacturing Processes (파티클보드 제조공정(製造工程)의 최적화(最適化) 모델개발에 관한 연구(硏究))

  • Chung, Joo Sang;Park, Hee Jun;Lee, Phil Woo
    • Journal of Korean Society of Forest Science
    • /
    • v.82 no.4
    • /
    • pp.396-405
    • /
    • 1993
  • In this paper, a nonlinear programming model to determine the optimal operating policy to minimize production costs for particleboard plants is presented. The model provides optimal values for three decision variables : specific gravity of particleboard, mat moisture content and mat resin content. These decision variables are key factors influencing the cost and quality of particleboard manufacturing processes. In formulating the nonlinear programming model, the minimum quality standards for internal bond strength and modulus of rupture of particleboard are used as industry-wide quality constraints. These quality standards are expressed as nonlinear functions of the decision variables. In order to demonstrate the applicability of the proposed model, the model is applied to solve for optimal solutions of four theoretical problems. The problem scenarios are built to investigate effects of changes in hot-pressing speed and purchase price of chip and resin.

  • PDF

A Study on Balanced Team Formation Method Reflecting Characteristics of Students (학생들의 특성을 반영한 균형적인 팀 편성 방법에 관한 연구)

  • Kim, Jong-hwan
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.24 no.6
    • /
    • pp.55-65
    • /
    • 2019
  • With the advent of the Fourth Industrial Revolution and changes in the educational environment, team-based assignments are increasing in university classes. Effective team formation in team-based class is an important issue that affects students' satisfaction and the effectiveness of education. However, previous studies mostly focused on post analysis on the results of team formation, which makes it difficult to use them in actual classes. In this paper, we present a mathematical model of how to create a balanced team that reflects students' abilities and other characteristics. Characteristic values for assignment may be scores, such as students' proficiency, binary values such as gender, and multi-values, such as grade or department. This problem is a type of equitable partitioning problem, which takes the form of 0-1 integer programming, and the objective function is linear or nonlinear, depending on how balance is achieved. The basic model or the extended model presented can be applied to the situation where teams are balanced in consideration of various factors in actual class.

Nonlinear Analysis of Incheon Bridge Considering Time-Dependent Behavior of Concrete Pylon (콘크리트 주탑의 시간 의존적 거동을 고려한 인천대교의 비선형 해석)

  • Ha, Su-Bok;Kim, Jin-Il;Hwang, Chang-Hee;Shin, Hyun-Mock;Kim, Moon-Young
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.2
    • /
    • pp.155-162
    • /
    • 2012
  • Recently, building of long span bridge is increasing and cable stayed bridges have large portion in civil projects. As the spans of bridges become longer, steel cable-stayed bridges have been constructed mainly for slim structure. But in many case, pylons are constructed by concrete for the stability of structures and the economy. Concrete is greatly influenced by the long-term behavior like creep and drying shrinkage, so analysis of stress redistribution and structural change in construction is required. In this study, as a cable stayed bridge with concrete pylon, Incheon Bridge is analyzed by nonlinear FEM analysis program RCAHEST. Through this analysis, time dependent effect of concrete pylon to whole cable stayed bridge system is studied.

Expansion of Sensitivity Analysis for Statistical Moments and Probability Constraints to Non-Normal Variables (비정규 분포에 대한 통계적 모멘트와 확률 제한조건의 민감도 해석)

  • Huh, Jae-Sung;Kwak, Byung-Man
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.11
    • /
    • pp.1691-1696
    • /
    • 2010
  • The efforts of reflecting the system's uncertainties in design step have been made and robust optimization or reliabilitybased design optimization are examples of the most famous methodologies. The statistical moments of a performance function and the constraints corresponding to probability conditions are involved in the formulation of these methodologies. Therefore, it is essential to effectively and accurately calculate them. The sensitivities of these methodologies have to be determined when nonlinear programming is utilized during the optimization process. The sensitivity of statistical moments and probability constraints is expressed in the integral form and limited to the normal random variable; we aim to expand the sensitivity formulation to nonnormal variables. Additional functional calculation will not be required when statistical moments and failure or satisfaction probabilities are already obtained at a design point. On the other hand, the accuracy of the sensitivity results could be worse than that of the moments because the target function is expressed as a product of the performance function and the explicit functions derived from probability density functions.

Advanced Time-Cost Trade-Off Model using Mixed Integer Programming (혼합정수 프로그래밍 기법을 이용한 진보된 Time-Cost Trade-Off Model)

  • Kwon, Obin;Lee, Seunghyun;Son, Jaeho
    • Korean Journal of Construction Engineering and Management
    • /
    • v.16 no.6
    • /
    • pp.53-62
    • /
    • 2015
  • Time-Cost Trade-Off (TCTO) model is an important model in the construction project planning and control area. Two types of Existing TCTO model, continuous and discrete TCTO model, have been developed by researchers. However, Using only one type of model has a limitation to represent a realistic crash scenario of activities in the project. Thus, this paper presents a comprehensive TCTO model that combines a continuous and discrete model. Additional advanced features for non-linear relationship, incentive, and liquidated damage are included in the TCTO model. These features make the proposed model more applicable to the construction project. One CPM network with 6 activities is used to explain the proposed model. The model found an optimal schedule for the example to satisfy all the constraints. The results show that new model can represent more flexible crash scenario in TCTO model.