This paper reviews nonparametric statistics by Neyman-Pearson test and Fisher test. Nonparametric statistics deal with the small sample with distribution-free assumption in multi-product and small-volume production. Two tests for various nonparametric statistic methods such as sign test, Wilcoxon test, Mann-Whitney test, Kruskal-Wallis test, Mood test, Friedman test and run test are also presented with the steps for testing hypotheses and test of significance.
신용평가 연구에서 부도와 정상의 분포함수들의 동일성을 검정하는 비모수적 방법으로 Kolmogorov-Smirnov 검정법 이외에 Clamor-Yon Mises, Anderson-Darling, Watson 검정방법을 소개한다. 부도와 정상의 분포함수들의 선형결합된 부도율의 분포함수에 관한 전체적인 정보는 파악되어 잘 알고 있다. 모집단의 분포함수를 알고 있다는 가정 하에 Clamor-Von Mises, Anderson-Darling, Watson 검정통계량의 수정통계량을 제안한다. 신용평가자료와 유사한 성격을 갖는 다양한 부도율의 확률분포로부터 스코어를 생성하여 본 연구에서 제안한 수정통계량을 비교 토론한다.
신용평가모형 개발과 적합성 검정 연구에서 부도율분포로부터 부도기업과 정상기업의 판별력을 검정하는 방법으로 비모수적인 방법인 Kolmogorov-Smirnov(K-S) 검정방법을 많이 사용한다. 모집단에 대한 누적분포함수를 알고있으며 이 분포함수가 두 개의 분포함수로 분할되었다는 가정하에서 두 분포함수 동일성을 검정하는 신용평가 연구에서 스코어 또는 부도율이 다양한 확률분포를 따른다고 가정하고 기존의 K-S 통계량과 수정된 K-S 통계량을 비교 토론한다.
랜덤화 블록 계획법(randomized block design)에서 대립가설형태에 따라 많은 비모수적인 방법들이 제안되었다. 일반대립가설에서 대표적으로 Fridman (1937)의 검정법이 있고, 순서형 대립가설에서는 Page (1963)의 검정법이 있다. 우산형 대립가설에 대한 비모수적 방법으로는 일원 배치 모형에서 k개의 표본 문제에 대하여 Mack과 Wolfe (1981)의 검정법이 있다. 본 논문에서는 랜덤화 블록 계획법(randomized block design)에서 우산형대립가설에 대하여 블록 간의 정보를 이용한 Hodges와 Lehmann (1962)의 정렬방법과 위치를 이용한 Kim (1999)의 검정법을 이용하여 검정법을 제안하였다. 또한, Monte carlo 모의실험을 통하여 제안된 검정법과 기존의 검정법을 비교하였다.
본 연구의 목적은 여성 노인의 정신 건강을 위한 프로그램을 구성하고 그 효과성을 검증하는데 있다. 이를 위해 연구자들은 경작 프로그램을 계획하여 여성 노인 14명을 대상으로 프로그램을 진행하고, 그 효과성을 양·질적 분석하였다. 양적 분석에서는 비모수 통계 방법을, 질적 분석에서는 면담 내용을 모두 전사하여 내용 분석하였다. 그 결과 텃밭 경작 프로그램에 참여한 여성노인들의 정신건강이 긍정적으로 변화되었음을 알 수 있었다. 특히, 면담을 통한 질적분석에서, 텃밭 경작은 참여자들에게 무료함에서의 탈출구가 되었고, 다른 사람들과 어우러질 수 있는 동기가 되고 있었다. 또한, 자신의 노력을 통해 얻은 수확물은 참여자들에게 성취감과 베풂의 기쁨을 주어 여성 노인들의 정신 건강에 긍정적 변화를 주고 있음을 알 수 있었다.
본 연구는 모래놀이 교육분석과 언어 교육분석의 전후에 상담자 발달에 차이가 있는지를 알아보고자 하였다. 모래놀이 교육분석 받은 집단, 언어 교육분석을 받은 집단, 교육분석을 받지 않은 세 집단으로 나누어 각 10명씩 선정하여 모래놀이 교육분석과 언어 교육분석을 받기 전과 후에 상담자발달수준 검사를 실시하였다. 집단 간 각 척도별 사전검사 결과 차이를 알아보기 위해 비모수 검정인 Kruskal-Wallis Test를 실시하였고, 사전-사후 검사 결과의 차이를 알아보기 위해 비모수 검정인 Wilcoxon signed rank Test를 실시하였다. 연구 결과 모래놀이 교육분석을 한 집단은 상담자발달전체, 사례이해, 인간적 윤리적 태도가 통계적으로 유의한 차이가 있는 것으로 나타났고, 언어교육분석을 받은 집단과 교육분석을 받지 않은 집단은 상담자발달수준에 통계적으로 유의한 차이가 없는 것으로 나타났다. 이 연구는 모래놀이 교육분석이 상담자 발달에 효과가 있음을 입증한 기초자료로서 의의가 있다.
본 연구는 치매노인들을 대상으로 집단미술치료 프로그램을 실시하여 인지기능의 하위영역과 자아존중감에 미치는 효과를 알아보고자 하였다. 연구대상은 서울시 ${\bigcirc}{\bigcirc}$노인종합노인복지관 내의 케어센터에 의뢰된 노인들 중 MMSE-K 총점이 19점 이하인 경증치매 여자노인 4명이었다. 연구기간은 2008년 1월15일부터 2008년 4월30일까지 1회기 60분씩 주 1회, 총 15회기를 실시하였고, 연구도구로는 MMSE-K(한국형 간이정신상태검사)와 Rosenberg의 Self-Esteem Scale(자아존중감 척도)을 사전, 사후에 실시하였다. 자료 분석은 사전 사후 검사한 결과의 단순 평균값 비교를 위한 기술통계와 Wilcoxon 비모수 통계를 이용하여 검증하였다. 본 연구결과를 통해 다음과 같은 결론을 얻었다. 첫째, 집단미술치료가 치매노인들의 인지기능에 효과가 있는 것으로 나타났다. 간이정신상태검사의 사전 사후 점수에 대하여 평균 16.75에서 19.75로 향상되었으며, Wilcoxon 비모수 통계를 이용한 검증결과 p값이 .046으로 통계적으로 유의하게 나타났으며, 하위영역별로 지남력, 기명력, 집중 및 계산, 언어기능, 이해 및 판단은 사전, 사후 검증에서 평균점수는 향상되었지만, 통계적 유의도는 없었으며, 기억회상은 사전 사후 검증에서 평균 0.70이 향상되었고, Wilcoxon 비모수 통계를 이용한 검증결과 p값이 .043으로 통계적으로 유의하게 나타났다. 둘째, 집단미술치료가 치매노인들의 자아존중감에 효과가 있는 것으로 나타났다. Self-Esteem Scale 사전 사후 검증에서 평균 20.75에서 24.25로 향상되었으며, 통계결과 p값이 .048로 통계적으로 유의하여 프로그램의 효과성이 입증되었다.
주어진 자료를 회귀모형에 적합시켜 적합된 함수의 미분을 구해야 하는 경우가 흔히 있다. 본 논문에서는 베지에 곡선을 이용하여 비모수적으로 추정하는 방법을 소개하고, 실제 자료에 적용시킨다. 이 방법의 장점은 원하는 차수의 미분이 가능할 뿐만 아니라, 비모수 추정에 따르는 커널의 선택과정이 필요없고 단지 평활모수만 선택하면 된다.
한 시계열의 원래 관찰치가 본래 가지고 있는 정보를 하나도 잃지 않고 또한 손상시키지 않고 그대로 보존되며 계산이 용이하고, 뿐만 아니라 가능도함수나 비모수 추정함수를 계산함에 있어 수치적 불안정 잠재성이 존재하지 않도록 변환된 시계열을 얻을 수 있으면, 다시 말해 각종 통계량의 계산에 용이하게 적용 가능하되 원래 시계열이 보유하고 있는 모든 성질들은 추호도 손상시킴이 없이 이 시계열을 변환시킬 수 있는 변환방법이 존재한다면, 모수의 추정치와 검정통계량을 정확히 얻을 수 있을 것이다. 이와 같은 변환방법이 웨이브렛 변환이다. 이 변환은 푸리에 분석의 결점을 극복하되 후리에 변환이 적용되는 분야에는 거의 모두 적용 가능한 변환방법이다. 이 논문에서는 시계열의 웨이브렛 변환을 소개하고 이 변환이 재무시계열의 모형화에 한몫을 단단히 할 수 있다는 점을 밝히고자 한다. 그리고 웨이브렛 변환을 성공적으로 적용할 수 있는 주가과정을 하나의 예로 제시하여 웨이브렛 변환의 구체적 적용방법을 탐구하고자 한다. 웨이브렛의 주가 시계열의 적용방법의 한 예로 주가의 장기기억과정을 분석한다. 한국과 외국의 일별 주가지수의 수익률 시계열들이 장기기억과정을 따르는 시계열임이 발견되었다. 여러 형태의 웨이브들을 사용하여 검정하였는데 이 모두가 한결같이 주가지수가 장기기억성과정임을 지지하고 있다.
지역 또는 도메인에 작은 크기의 표본이 배정되어 추정의 정도가 나쁜 경우에 사용되는 준모수적 또는 비모수적 소지역 추정법은 최근 많은 연구가 진행되고 있다. 본 논문에서는 커널을 이용한 국소다항 혼합모형 소지역 추정법과 벌점 스플라인을 이용한 혼합모형 소지역 추정법이 연구되었다. 이 두 방법과 소지역추정에 흔히 사용되고 있는 선형 혼합모형을 모의실험을 통해 그 우수성을 비교하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.