• Title/Summary/Keyword: 비대칭 타

Search Result 40, Processing Time 0.036 seconds

Tile Partitioning-based HEVC Parallel Decoding Optimization for Asymmetric Multicore Processor (비대칭 멀티코어 시스템 상의 HEVC 병렬 디코딩 최적화를 위한 타일 분할 기법)

  • Ryu, Yeongil;Roh, Hyun-Joon;Ryu, Eun-Seok
    • Journal of KIISE
    • /
    • v.43 no.9
    • /
    • pp.1060-1065
    • /
    • 2016
  • Recently, there is an emerging need for parallel UHD video processing, and the usage of computing systems that have an asymmetric processor such as ARM big.LITTLE is actively increasing. Thus, a new parallel UHD video processing method that is optimized for the asymmetric multicore systems is needed. This paper proposes a novel HEVC tile partitioning method for parallel processing by analyzing the computational power of asymmetric multicores. The proposed method analyzes (1) the computing power of asymmetric multicores and (2) the regression model of computational complexity per video resolution. Finally, the model (3) determines the optimal HEVC tile resolution for each core and partitions/allocates the tiles to suitable cores. The proposed method minimizes the gap in the decoding time between the fastest CPU core and the slowest CPU core. Experimental results with the 4K UHD official test sequences show average 20% improvement in the decoding speedup on the ARM asymmetric multicore system.

Asymmetric Half-Bridge Converter with Reduced DC-offset current in Transformer (감소된 DC-옵셋 전류를 가지는 비대칭 하프 브리지 컨버터)

  • Yu, Chan-Hun;Youn, Han-Shin;Jeong, Yeon-Ho;Moon, Gun-Woo
    • Proceedings of the KIPE Conference
    • /
    • 2014.07a
    • /
    • pp.201-202
    • /
    • 2014
  • 본 논문에서는 비대칭 하프브리지 컨버터의 비대칭 시비율을 개선한 컨버터를 제안한다. 일반적인 비대칭 하프 브리지 컨버터의 경우 홀드업 타임 조건 때문에 넓은 입력 전압 범위를 가지게 되고, 정상 동작시 스위치의 비대칭 동작이 심화 된다. 이러한 스위치의 비대칭 동작으로 변압기의 자화 전류 옵셋이 증가하고 변압기 부피 및 2차측 정류기들의 전압 불균형이 심화되어 컨버터 효율이 감소하게 된다. 하지만 제안된 컨버터에서는 보조 스위치와 보조 커패시터를 이용, 변압기의 권선비를 조정하여 정상 동작 시 정류기들의 비대칭을 저감하였고, 변압기의 자화 전류 옵셋을 감소시켜 높은 효율을 달성하였다. 제안된 컨버터의 타당성을 검증 하기 위해 300W 프로토 타입을 제작하여 실험을 진행 하였다.

  • PDF

수상 및 수중운동체의 로버스트 안정성 해석 및 안정화에 관한 연구

  • Kim, Yeong-Bok;Ji, Sang-Won;Phuoc, Bui Van
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2011.11a
    • /
    • pp.8-9
    • /
    • 2011
  • 본 논문에서는 수상 및 수중운동체의 안정성 및 안정화기법에 관해 고찰한다. 선박이 운동을 하게 되면 부가질량이 변하게 되고 대칭인 시스템행렬이 비대칭이 된다. 비대칭성에 따라 시스템의 안정성해석방법도 달라지는데 예를 들어 가속도 피드백을 통해 비대칭요소를 제거하여 대칭으로 변환시키는 것이 가장 대표적인 해석 및 안정화 기법이다. 시스템 모델자체는 어디까지나 모델이기 때문에 대상시스템을 명확하게 수식으로 표현할 수 없으므로 피드백에 의한 비대칭요소를 소거시키는 방법은 타당하지 못하다. 따라서 본 논문에서는 대칭행렬이 비대칭행렬로 변하는 제약에 구애받지 않는, 보다 일반성을 갖는 안정성해석법을 제안한다.

  • PDF

An Enhanced Adaptive Time Slot Assignment using Access Statistic in TD/CDMA TDD system (TD/CDMA TDD 시스템에서 접근 통계를 사용한 적응형 타임슬롯 할당 알고리즘)

  • 박소영;김낙명
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.26 no.10A
    • /
    • pp.1645-1652
    • /
    • 2001
  • 제3세대 이동 통신 시스템에서 상향 링크와 하향 링크 사이에 불균형적인 타임 슬롯 할당이 가능한 TD/CDMA TDD 시스템은 비대칭적인 트래픽을 효과적으로 분배하는데 적합하다. 게다가 TD/CDMA TDD 시스템은 슬롯이 시간 영역과 코드 영역에서 정의되기 때문에 유효 자원의 statistical multiplexing이 매우 효과적이다. 그러나 상향 링크와 하향 링크사이의 트래픽의 비대칭성을 반영하기 위해서 타임 슬롯을 최적으로 할당시킬 수 있는 동적 경계선이 요구된다. 본 논문에서 슬롯의 하향 링크부분이 이동국의 접근 시도의 정도에 따라 최대화되는 새로운 최적의 TDD 경계선 제어 움직임 알고리즘을 제안하였다. 제안된 알고리즘에서 이동국의 평균 접근 시도가 미리 정의된 상한 임계치를 초과할 경우, TDD 경계선은 평균 접근 시도가 다른 하한 임계치 아래로 내려갈 때까지 프레임의 중앙에 위치한다. 본 논문에서 모의실험 결과를 통하여 제안된 알고리즘이 기존의 TDD 경계선 알고리즘보다 데이터 트래픽의 평균 접근 지연과 음성 트래픽의 블록킹 확률 측면에서 훨씬 더 좋은 성능을 나타냄을 입증하였다.

  • PDF

Rockets and Feathers Across Multi-Gasoline Products: Evidence from Error Correction Model (수송용 유류제품의 제품별 비대칭성에 관한 연구: 오차수정모형을 통한 접근)

  • Chang, Yenjae;Kim, Dae-Wook
    • Environmental and Resource Economics Review
    • /
    • v.25 no.4
    • /
    • pp.495-516
    • /
    • 2016
  • This study empirically examines how asymmetric price adjustment of the retail gas price happens differently for various oil products, such as high-grade gasoline, regular gasoline, and diesel, by employing asymmetric error correction model within weekly data set from 2010~2015. Our estimation results show that the price adjustment, across the all oil types, predicated on shifting crude oil and wholesale oil prices is asymmetric. In addition, the duration of asymmetry was shorter in high-grade gasoline case than in other oil types. This took place by rapid price adjustment of high-grade gasoline price when faced with both cost increases and decreases, in comparison with regular gasoline and diesel cases. There results were attributed by characteristics of the consumer group and a high retail-wholesale margin of high-grade gasoline.

Hydrodynamic Characteristics and Speed Performance of a Full Spade and a Twisted Rudder (전가동타와 비대칭타의 유체동역학적 특성 및 속도성능)

  • Choi, Jung-Eun;Kim, Jung-Hun;Lee, Hong-Gi;Park, Dong-Woo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.47 no.2
    • /
    • pp.163-177
    • /
    • 2010
  • This article examines hydrodynamic characteristics and speed performances of a ship attached with a full spade and a twisted rudder based on a computational method. For this study, a 13,100 TEU container carrier is selected. The turbulent flows around a ship are analyzed by solving the Reynolds-averaged Navier-Stokes equation together with the application of Reynolds stress turbulence model. The computations are carried out at the conditions of rudder, bare hull, hull-rudder and hull-propeller-rudder. An asymmetric body-force propeller is applied. The speed performance is predicted by the model-ship performance analysis method of the revised ITTC'78 method. The hydrodynamic forces are compared in both rudder-open-water and self-propulsion conditions. The flow characteristics, the speed performance including propulsion factors and the rudder-cavitation performance are also compared. The model tests are conducted at a deep-water towing tank to validate the computational predictions. The computational predictions show that the twisted rudder is superior to the full spade rudder in the respect of the speed and the cavitation performances.

An Experimental Comparison Study on Various Full-Spade Rudder Performance for Container Carrier (컨테이너선용 여러 가지 전타의 성능에 대한 실험적 비교연구)

  • Chun, Jang-Ho;Kim, Moon-Chan;Lee, Won-Joon
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2013.12a
    • /
    • pp.42-46
    • /
    • 2013
  • Recently, according to the growth of demand about large container carrier, the studies for cavitation of semi-spade rudder were increased. In spite of many effort to solve, the fundamental solution can not be found. So, the studies for full-spade rudder are increasing to solve. In Pusan national university, the studies for full-spade twisted rudder and full-spade wavy twist rudder were carried out. However, most studies are carried out in numerical analysis and the many studies of experimental comparison between each rudder are not exist. This paper describe design history of full-spade rudder (twist rudder, wavy twist rudder) for KCS (KRISO Container Ship) and compare performance of each designed full-spade rudder about resistance and self-propulsion with conventional rudder (semi-spde rudder). The measurement about designed rudder's rudder force will be performed near future.

  • PDF

A Study on the Robust Stability and Stabilization Problem for Marine Vessel (수상 및 수중 운동체의 강인 안정성 해석 및 안정화에 관한 연구)

  • Kim, Young-Bok;Cho, Kwang-Hwan
    • Journal of Navigation and Port Research
    • /
    • v.36 no.5
    • /
    • pp.379-385
    • /
    • 2012
  • In this paper, the stability and stabilization problems for marine vessels including surface and underwater vehicles are described. In the marine vessels, there are many and strong nonlinear parameters. These give hard design process and difficulties to us. In this article, at first we make a descriptor system representation as a controlled system to preserve the physical parameters of the system as it is. And we propose a new stability and stabilizability conditions based on the quadratic stabilization approach which gives a solution for the unreasonable problems produced by added mass. That is, the proposed conditions are not interfered with the nonsymmetric matrix constraint. And the stability condition is given by an matrix inequality such that it makes us to obtain a solution easily for something.

A Numerical Performance Study on Rudder with Wavy Configuration at High Angles of Attack (Wavy 형상 적용에 따른 대 각도에서의 러더 성능에 대한 수치해석 연구)

  • Tae, Hyun June;Shin, Young Jin;Kim, Beom Jun;Kim, Moon-Chan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.54 no.1
    • /
    • pp.18-25
    • /
    • 2017
  • This study deals with numerically comparing performance according to rudder shape called 'Twisted rudder and Wavy twisted rudder'. In comparison with conventional rudder, rudder with wavy shape has showed a better performance at high angles of attack($30^{\circ}{\sim}40^{\circ}$) due to delaying stall. But most of study concerned with wavy shape had been performed in uniform flow condition. In order to identify the characteristics behind a rotating propeller, the present study numerically carries out an analysis of resistance and self-propulsion for KCS with twisted rudder and wavy twisted rudder. The turbulence closure model, Realizable $k-{\epsilon}$, is employed to simulate three-dimensional unsteady incompressible viscous turbulent and separation flow around the rudder. The simulation of self-propulsion analysis is performed in two step, because of finding optimization case of wavy shape. The first step presents there are little difference between twisted rudder and case of H_0.65 wavy twisted rudder in delivered power. So two kind of rudders are employed from first step to compare lift-to-drag ratio and torque at high angles of attack. Consequently, the wavy twisted rudder is presented as a possible way of delaying stall, allowing a rudder to have a better performance containing superior lift-to-drag ratio and torque than twisted rudder at high angles of attack. Also, as we indicate the flow visualization, check the quantity of separation flow around the rudder.

Development of Twisted Rudder to Reduce Fuel Oil Consumption for Medium Size Container Ship (중형 컨테이너선의 연료절감형 비틀림 타 개발)

  • Chun, Ho-Hwan;Cha, Kyung-Jung;Lee, Inwon;Choi, Jung-Eun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.55 no.2
    • /
    • pp.169-177
    • /
    • 2018
  • Twisted rudder, twisted rudder with bulb, and twisted rudder with bulb and fin have been developed computationally for 3,000 TEU container ship through parametric study. The objective function is to minimize delivered power in model scale. Design variables are twisted angle, rudder bulb diameter and fin angle. The governing equation is Reynolds averaged Navier-Stokes equations in an unsteady turbulent flow and the Reynolds stress model applied for the turbulent closure. A double body model is used for the treatment of free-surface. The calculation was carried out in towing and self-propulsion conditions at design speed. The sliding mesh technique was employed to simulate the flow around the propeller. Form factor is obtained from the towing computation. Self-propulsion point is obtained from the self-propelled computations at two propeller rotating speeds. The delivered power due to the designed twisted rudder, twisted rudder with bulb, and twisted rudder with bulb and fin are reduced by 1.1%, 1.6%, and 2.0%, respectively.