• Title/Summary/Keyword: 비뉴턴유체

Search Result 47, Processing Time 0.038 seconds

Pulsatile Flow characteristics of Non-Newtonian fluid in the Stenosed Tubes (협착관내 비뉴턴유체의 맥유동특성)

  • 유상신
    • The Korean Journal of Rheology
    • /
    • v.8 no.1
    • /
    • pp.1-10
    • /
    • 1996
  • 본 논문에서는 협착이 발생된 원관내 뉴턴유체와 비뉴턴유체의 정상 및 맥동유동특 서을 유한요소법으로 해석하였다. 본연구는 맥동유동특성에서 협착관 형상의 변화, 협착이 주기적으로 발생된 협착관에서 협착부사이의 거리와 협착부의 수가유동특성에 미치는 영향 을 검토하였다. 레이놀즈수가 일정할 때 협착이 발생된 원형관내 뉴턴유체와 비뉴턴유체의 맥동유동특성은 정상유동의 경우와 크게 다르게 나타난다. 맥동유동에서는 정상유동보다 관 중앙부에서 속도분포가 훨씬 평탄하고 맥동유동의 속도분포는 감속시에 비하여 가속시에 관 중앙부의 속도분포가 더 평탄하게 나타난다. 정상유동과 맥동유동으 감속시에서는 협착부 하류의 벽면에서 재순환영역이 발생된다. 협착부의 수가 증가하면 각 협착부 주위의 속도장 은 유사하게 나타나지만 전체 압력손실은 크게 증가한다. 협착부사이의 거리가 변화될 경우 맥동유동속도의 국소최대치와 국소최소치의 차이가 가속시에는 거의 없지만 감속시에는 협 착부사이의 거리에 따라 다르게 나타난다.

  • PDF

A Numerical Analysis on the Hemodynamic Characteristics in Elastic Blood Vessel with Stenosis (협착이 있는 탄성혈관을 흐르는 혈액의 유동특성에 관한 수치해석적 연구)

  • 정삼두;김창녕
    • Journal of Biomedical Engineering Research
    • /
    • v.23 no.4
    • /
    • pp.281-286
    • /
    • 2002
  • In this study, blood flow in a carotid artery supplying blood to the human's brain has been numerically simulated to find out how the blood flow affects the genesis and the growth of atherosclerosis and arterial thrombosis. Velocity Profiles and hemodynamic parameters have been investigated for the carotid arteries with three different stenoses under physiological flow condition. Blood has been treated as Newtonian and non-Newtonian fluid. To model the shear thinning properties of blood for non-Newtonian fluid, the Carreau-Yasuda model has been employed. The result shows that the wall shear stress(WSS) increases with the development of stenosis and that the wall shear stress in Newtonian fluid is highly evaluated compared with that in non-Newtonian Fluid. Oscillatory shear index has been employed to identify the time-averaged reattachment point and this point is located farther from the stenosis for Newtonian fluid than for non-Newtonian fluid The wall shear stress gradient(WSSG) along the wall has been estimated to be very high around the stenosis region when stenosis is developed much and the WSSG peak value of Newtonian fluid is higher than that of non-Newtonian fluid.

Comparison of Centrifugal Pump Performances for Newtonian and Non-Newtonian Fluids (뉴턴유체와 비뉴턴유체의 원심펌프성능특성 비교)

  • Kim, Dong-Joo;Roh, Hyung-Woon;Suh, Sang-Ho
    • 유체기계공업학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.57-62
    • /
    • 2004
  • In the current study the effects on pump performances of a conventional centrifugal pump for Newtonian and non-Newtonian fluid were experimentally studied. The study aimed to compare the pump characteristics for Newtonian and non-Newtonian fluid. The working fluids are water, aqueous sugar solution, glycerin solution, muddy solution and pulp solution. The pump characteristics with high viscosity fluids were different. The operating efficiency for the sugar and glycerin solutions were decreased to $8.1\%$ and $12.9\%$ than that of water. The head reductions of the muddy solution for different concentration ratios were decreased to $7.97\%,\;15.11\%$ and $24.87\%$ than that of water And the head reductions of the pulp solution for different concentration ratios were decreased to $11.87\%,\;19.79\%$ md $36.81\%$ than that of water.

  • PDF

Numerical Analysis of Branch Flows for Newtonian and Non-Newtonian Fluids (뉴턴유체와 비뉴턴유체에 대한 분기관 유동의 수치해석)

  • 서상호;유상신;노형운
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.10
    • /
    • pp.2762-2772
    • /
    • 1994
  • Branch flows for Newtonian and non-Newtonian fluids are simulated by the finite volume method. The modified power-law model is employed as a constitutive equation of the non-Newtonian fluids. Numerical analyses are focused on understanding of flow patterns for different values of branch angles, diameter ratios and Reynolds numbers. The numerical results are compared with the existing experimental data. The calculated velocity profiles and pressure variations are in good agreement with available experimental results.

Flow Characteristics of Non-Newtonian Fluids in the Stenosed Branch Tubes (협착이 발생된 분기관내 비뉴턴유체의 유동특성 연구)

  • Suh, S.H.;Yoo, S.S.;Roh, H.W.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.8 no.3
    • /
    • pp.307-316
    • /
    • 1996
  • The objective of present study is to obtain information on the stenosis effects in the branch tubes for industrial piping system and atherogenesis processing in human arteries. Numerical solutions for flows of Newtonian and non-Newtonian fluids in the branch tubes are obtained by the finite volume method. Centerline velocity and pressure along the bifurcated tubes for water, blood and aqueous Separan AP-273 solution are computed and the numerical results of blood and the Separan solution are compared with those of water. Flow phenomena in the stenosed branch tubes are discussed extensively and predicted effectively. The effects of stenosis on the pressure loss coefficients are determined.

  • PDF

Numerical Study of Non-Newtonian Flow Characteristics in Sudden Contraction-Expansion Channel (급축소-확대관에서 비뉴턴유체의 유동 특성에 관한 수치적 연구)

  • Kim, Hyung Min
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.6
    • /
    • pp.591-597
    • /
    • 2013
  • Because most existing non-Newtonian models are not suitable for application to the lattice Boltzmann method, theoretical and numerical studies in this regard remain challenging. In this study, the hydrokinetic (HK) model was modified and applied to a 3D sudden contraction-expansion channel flow, and the characteristics of the HK model flow were evaluated to generate non-trivial predictions in three-dimensional strong shear flows. The HK model is very efficient for application to the lattice Boltzmann method because it utilizes the shear rate and relaxation time. However, the simulation would be unstable in a high shear flow field because the local relaxation time sharply decreases with an increase in the shear rate in a strong shear flow field. In the HK model, it may become necessary to truncate the relaxation time and non-dimensional parameter to obtain stable numerical results.

Flow and Displacement of Non-Newtonian Fluid(Power-Law Model) by Surface Tension and Gravity Force in Inclined Circular Tube (경사진 원형관에서 표면장력과 중력에 의한 비뉴턴 유체(멱법칙 모델)의 유동 및 변위)

  • Moh, Jeong Hah;Cho, Y.I.
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.1
    • /
    • pp.9-16
    • /
    • 2014
  • This paper presents the theoretical analysis of a flow driven by surface tension and gravity in an inclined circular tube. A governing equation is developed for describing the displacement of a non-Newtonian fluid(Power-law model) that continuously flows into a circular tube owing to surface tension, which represents a second-order, nonlinear, non-homogeneous, and ordinary differential form. It was found that quantitatively, the theoretical predictions of the governing equation were in excellent agreement with the solutions of the equation for horizontal tubes and the past experimental data. In addition, the predictions compared very well with the results of the force balance equation for steady.

Pulsatile Flow Analyses of Newtonian Fluid and Non-Newtonian Pluid in Circular Tube (원관내 뉴턴유체와 비뉴턴유체의 맥동유동특성)

  • Cho, Min-Tae;Roh, Hyung-Woon;Suh, Sang-Ho;Kim, Jae-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.11
    • /
    • pp.1585-1596
    • /
    • 2002
  • The objectives of the present study are to numerically and experimentally investigate the steady and pulsatile flow phenomena in the circular tubes, to quantitatively compare the flow characteristics of Newtonian and non-Newtonian fluids, and to find meaningful hemodynamic information through the flow analysis in the human blood vessels. The particle image velocimetry is adopted to visualize the flow fields in the circular tube. and the results from the particle image velocimetry are used to validate the results of the numerical analysis. In order to investigate the blood flow phenomena in the circular tube. constitutive equations, which are suitable to describe the rheological properties of the non-Newtonian fluids. are determined, and the steady and pulsatile momentum equations are solved by the finite volume prediction. The velocity vectors of the steady and pulsatile flow in the circular tube obtained by the particle image velocimetry arc in good agreement with those by the numerical analysis. For the given mass flow rate. the axial velocity profiles of the Newtonian and the non-Newtonian fluids appear differently. The pulsatile flow phenomena of the Newtonian and the non-Newtonian fluids are quite different from those of the steady flow.

Viscosity Measurement of Non-Newtonian Fluids Using the Transient Flow Phenomena in the Capillary Tube (모세관내 과도유동현상을 이용한 비뉴턴유체의 점도측정)

  • Cho, Min-Tae;Suh, Sang-Ho;Yoo, Sang-Sin
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.738-741
    • /
    • 2001
  • The purpose of the present study is to measure the viscosity of liquid in the capillary tube viscometer using the unsteady flow concept. The capillary tube viscometer is consisted of a small cylindrical reservoir, capillary tubes, and the mass flow rate measuring system interfaced with computer. Two capillary tubes with 1.152 and 3.002 mm I.D. are used to determine the diameter effects on the viscosity measurements. The instantaneous shear rate and gravitational driving force in the capillary tube are determined by measuring the mass flow rate through the capillary tube instantaneously. The measured viscosities of water and aqueous Separan solution are in good agreement with the reported experimental data.

  • PDF

Characteristic of the non-Newtonian fluid flows with vibration (진동장에서의 비뉴턴유체 유동의 특성)

  • Choi, Sung-Ho;Shin, Se-Hyun
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.2048-2053
    • /
    • 2003
  • The present study investigated the effect of the transversal vibration on the flow characteristics for non-Newtonian fluids. The effect was tested by experiment and numerical analysis. For Newtonian fluids, both of experiment and numerical analysis results showed that mechanical vibration did not affect the flow rate. For non-Newtonian fluids, however, there was significant disagreement between experiment and numerical results. The numerical results showed a negligibly small effect of vibration on the flow rate whereas experimental results showed a significant flow rate increase associated with transversal vibration. The results implied that the increased flow rate was caused not only by imposed shear rates at the wall but also by the changes of rheological characteristics due to the transversal vibration.

  • PDF