• Title/Summary/Keyword: 비구조격자체계

Search Result 3, Processing Time 0.026 seconds

Numerical Analysis of Two-dimenstional Flow in Curvilinear Coordinate System (곡선좌표계에서의 2차원 흐름의 수치해석)

  • Kim, Hyung-Jun;Cho, Yong-Sik;Kim, Su-Jin
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.402-407
    • /
    • 2006
  • 본 연구는 곡선좌표계에서 유한차분기법(finite difference method)을 이용하여 2차원 흐름이 모의가능한 수치모형을 개발하는 것이다. 기존의 연구는 대부분 직교좌표계(cartesian coordinate system)에서의 격자망을 대상으로 개발되고 적용되었기 때문에 불규칙한 흐름의 경계 및 형상을 올바로 표현하기 어려웠다. 유한요소법이나 유한체적법같은 수치모의기법들이 개발되어 비구조격자체계를 구성하고 자연현상에 가까운 경계 표현할 수 있도록 개발되었다. 하지만 위의 기법들은 질량과 운동량과 같은 물리량을 보존하기 위해서 매우 조밀한 격자체계를 가져야만 한다. 이에 본 연구에서는 기존의 문제점들을 해결하기 위하여 곡선좌표계(curvilinear coordinate system)를 이용하여 지배방정식을 표현하고 2차원 흐름을 모의할 수 있는 모형을 구축한다. 수치모형은 leap-frog기법과 1차 정확도의 풍상차분기법(upwind scheme)을 사용하여 구성하였다. 본 연구에서 개발된 모형을 사각수조 및 만곡수로흐름에 적용하여 모의결과를 해석해 및 실험관측값과 비교하였다. 이로부터 본 수치모형이 해석해 및 실측치와 잘 일치하고 있음을 알 수 있었다.

  • PDF

A Numerical Analysis of the Shallow Water Equations Using the Multi-slope MUSCL (다중 경사 MUSCL을 이용한 천수방정식의 수치해석)

  • Hwang, Seung-Yong;Lee, Sam-Hee
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.158-158
    • /
    • 2011
  • 천수방정식과 같은 쌍곡선형 미분방정식의 불연속 해에 대한 Riemann 해법은, 1950년대 말 공기동역학 분야에서 S. K. Godunov의 선구적인 시도 이후, 다양한 영역에서 성공적으로 적용되고 있다. 당초 제안된 해법은 공간에 대해 1차 정도였으나, 2차의 정도를 얻을 수 있는 기법이 1970년대 말 B. van Leer에 의해 제안되었으며, MUSCL로 불린다. 서로 인접한 격자의 보존변수가 고려된 경사가 도입되어 두 격자에 의해 공유되는 변의 좌 우에서 선형으로 보존변수가 재구축되는 MUSCL은 제한자와 함께 이용될 때, 구조 격자 체계에서 비교적 단순하면서도 효과적인 적용성이 입증되었다. 그런데, 이 기법을 2차원의 비구조 격자 체계에 적용하는 경우, 인접한 모든 격자의 보존변수를 고려한 평면의 경사를 결정해야 하는 어려움이 따른다. 특히, 삼각형 비구조 격자에 적용할 경우 최적의 평면을 결정하기 위해 Green-Gauss 적분식이나 최소-자승법 등을 이용하게 된다. 이에 비해, 2010년 T. Buffard와 S. Clain이 제안한 다중경사 기법은 격자의 각 변에서 경사가 각각 결정되는 방법으로 계산량이 많은 Green-Gauss 적분식이나 최소자승법을 피할 수 있는 장점이 있는 것으로 알려져 있다. 정확해가 알려진 두 경우에 대해 몇 가지 제한자를 적용한 결과를 1차 정도의 해와 함께 비교하였으며, superbee 제한자에 의한 결과가 우수하였으나, 희유파와 충격파가 맞닿는 곳에서 수치 분산이 나타났다. minmod 제한자의 결과가 대체로 무난하였으며, 이를 2차원 댐 붕괴 문제에 적용하여 1차 정도의 해와 비교하였다. 마찰이 없고 초기 수심이 댐 상류에서 10 m, 하류에서 5 m로서 물이 차 있는 경우, 1차 정도의 해에서 나타나는 수치 소산이 2차 정도에서는 발생되지 않았다. 댐 하류에서 초기에 수심이 영으로 바닥이 드러난 경우에서 마찰의 영향을 검토하였다. 마찰이 있는 경우, 마찰 경사 항의 Manning 계수를 0.04로 두었으며, 마찰에 의한 영향이 잘 드러났다. 수심이 50 mm 보다 작은 경우에는 마찰을 적용하지 않았다. 이 연구는 환경부 '차세대 핵심환경기술개발 사업'의 지원에 의한 것이다.

  • PDF

Experimental Study of Estimating the Optimized Parameters in OI (서남해안 관측자료를 활용한 OI 자료동화의 최적 매개변수 산정 연구)

  • Gu, Bon-Ho;Woo, Seung-Buhm;Kim, Sangil
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.31 no.6
    • /
    • pp.458-467
    • /
    • 2019
  • The purpose of this study is the suggestion of optimized parameters in OI (Optimal Interpolation) by experimental study. The observation of applying optimal interpolation is ADCP (Acoustic Doppler Current Profiler) data at the southwestern sea of Korea. FVCOM (Finite Volume Coastal Ocean Model) is used for the barotropic model. OI is to the estimation of the gain matrix by a minimum value between the background error covariance and the observation error covariance using the least square method. The scaling factor and correlation radius are very important parameters for OI. It is used to calculate the weight between observation data and model data in the model domain. The optimized parameters from the experiments were found by the Taylor diagram. Constantly each observation point requires optimizing each parameter for the best assimilation. Also, a high accuracy of numerical model means background error covariance is low and then it can decrease all of the parameters in OI. In conclusion, it is expected to have prepared the foundation for research for the selection of ocean observation points and the construction of ocean prediction systems in the future.