Annual Conference on Human and Language Technology
/
2005.10a
/
pp.179-183
/
2005
기존의 문서 재사용 탐지 모델은 문서 혹은 문장 단위로 그 내부의 단어 혹은 n-gram을 비교를 통해 문장의 재사용을 판별하였다. 그렇지만 문서 단위의 재사용 검사는 다른 문서의 일부분을 재사용하는 경우에 대해서는 문서 내에 문서 재사용이 이루어지지 않은 부분에 의해서 그 재사용 측정값이 낮아지게 되어 오류가 발생할 수 있는 가능성이 높아진다. 반면에 문장 단위의 문서 재사용 검사는 비교문서 내의 문장들에 대한 비교를 수행하게 되므로, 문서의 일부분에 대해 재사용물 수행한 경우에도 그 재사용된 부분 내의 문장들에 대한 비교를 수행하는 것이므로 문서 단위의 재사용에 비해 그런 경우에 더 견고하게 작동된다. 그렇지만, 문장 단위의 비교는 문서에 비해 짧은 문장을 단위로 하기 때문에 그 신뢰도에 문제가 발생하게 된다. 본 논문에서는 이런 문장단위 비교의 단점을 보완하기 위해 문장 단위의 문서 재사용 검사를 수행 후, 문장의 주변 문장의 재사용 검사 결과를 이용하여 문장 단위 재사용 검사에서 일어나는 오류를 감소시키고자 하였다.
Annual Conference on Human and Language Technology
/
2009.10a
/
pp.31-34
/
2009
본 연구의 목표는 비교 문장들을 일곱 가지 유형으로 자동 분류하는 것으로서, 비교 문장 추출, 비교 문장 유형 분류, 유형별 비교 관계 분석으로 이어지는 비교마이닝 세 단계 중 두 번째 과제이다. 본 연구에서는 변환 기반 학습(Transformation-based Learning) 기법을 이용한다. 자연어 처리 분야 여러 부문에서 사용되고 있는 변환 기반 학습은 오류를 감소시키는 최적의 규칙을 자동으로 생성하여 정답을 찾는 규칙 기반 학습 방법이다. 웹상의 다양한 도메인에서 추출한 비교 문장들을 대상으로 실험한 결과, 일곱 가지 비교 문장 유형을 분류하는데 있어서 정확도 80.01%의 우수한 성능을 산출하였다.
Proceedings of the Korean Information Science Society Conference
/
2011.06a
/
pp.225-228
/
2011
본 논문은 비교 마이닝(comparison mining) 의 일환인 비교 요소 자동 추출에 관하여 연구한다. 비교 마이닝은 텍스트 마이닝의 한 분야로서 대용량의 텍스트를 대상으로 비교 관계롤 자동 분석하며, 비교 문장인지 아닌지를 식별하는 단계, 비교 타입을 분류하는 단계, 다양한 비교 요소들을 추출하는 단계, 추출된 요소를 분석 및 요약하는 단계 등을 거치게 된다. 본 연구에서는 특정 타입의 비교 문장이 주어졌을때, 그 문장에서 비교 요소를 자동으로 추출하는 단계의 과제를 수행하며, 우열 비교 타입 및 최상급 타입 문장들을 대상으로 비교 주체, 비교 대상, 비교 술어를 추출한다. 실험 과정으로는, 우선 비교 요소 후보들을 선정하고, 그 후 각 요소별로 확률을 계산하여 가장 높은 수치를 기록한 요소를 정답으로 채택하게 된다. 확률 계산은 지지 벡터 기계 (Support Vector Machine)를 이용한다. 인터넷 상의 다양한 도메인에서 추출된 비교 문장들을 대상으로 비교 요소 추출을 수출한 결과, 정확도 86.81 %의 우수한 성능을 산출 할 수 있었다.
Annual Conference on Human and Language Technology
/
2008.10a
/
pp.183-188
/
2008
본 연구에서는 문서 안에 있는 문장들 중 비교 문장을 추출해낸다. 비교 문장이란 두 개 이상의 객체, 혹은 한 객체의 시간차, 공간차 등에 따른 변화를 비교하는 내용을 포함하는 문장을 말한다. 비교 문장을 구별해내는 작업은 많은 분야에서 응용될 수 있는데, 특히 객체(사람, 상품 등)에 대한 평가 면에서 매우 직접적이고 확실한 자료로 활용될 수 있다. 비교문장 추출을 위해 본 연구에서는 비교어휘를 이용한 추출 및 MEM(Maximum Entropy Model)을 적용하였으며, 뉴스기사(news article), 상품에 대한 고객리뷰(customer review) 등의 문서를 대상으로 실험하여 재현율 88.40%, 정확률 88.68%의 결과를 산출하였다.
Annual Conference on Human and Language Technology
/
2019.10a
/
pp.383-387
/
2019
자연어 문장의 자동 평가는 생성된 문장과 정답 문장을 자동으로 비교 및 평가하여, 두 문장 사이의 의미 유사도를 측정하는 기술이다. 이러한 자연어 문장 자동 평가는 기계 번역, 자연어 요약, 패러프레이징 등의 분야에서 자연어 생성 모델의 성능을 평가하는데 활용될 수 있다. 기존 자연어 문장의 유사도 측정 방법은 n-gram 기반의 문자열 비교를 수행하여 유사도를 산출한다. 이러한 방식은 계산 과정이 매우 간단하지만, 자연어의 다양한 특성을 반영할 수 없다. 본 논문에서는 BERT를 활용한 한국어 문장의 유사도 측정 방법을 제안하며, 이를 위해 ETRI에서 한국어 말뭉치를 대상으로 사전 학습하여 공개한 어절 단위의 KorBERT를 활용한다. 그 결과, 기존 자연어 문장의 유사도 평가 방법과 비교했을 때, 약 13%의 성능 향상을 확인할 수 있었다.
Han, Sangdo;Yu, Hwanjo;Lee, Gary Geunbae;Myaeng, Sung-Hyon
Annual Conference on Human and Language Technology
/
2018.10a
/
pp.270-272
/
2018
본 연구에서는 질의-본문 간 문장 비교 정보가 reading comprehension task 의 성능 향상에 도움이 되는지를 확인해 보았다. 기존의 reading comprehension 방법론이 질의-본문 간 의미 비교정보를 활용하지만, 본문 전체를 대상으로 한 비교이기 때문에 문장 단위의 정보가 활용되지 못하는 단점이 있었다. 실험에 사용한 데이터는 대표적인 RC 데이터 중 하나인 NewsQA[5] 를 이용하였으며, 질의-본문 문장 간 비교를 통한 성능 향상의 잠재력을 확인하였다.
The Transactions of the Korea Information Processing Society
/
v.5
no.11
/
pp.2874-2883
/
1998
프로그램 조각화 기법은 프로그램을 이해하기 쉬운 조각 단위로 분해하여 소프트웨어 개발자나 유지보수다사 프로그램을 쉽게 이해할 수 있도록 지원한는 방법이다. 본 논문ㅇ세는 변수-변수 관련성을 이용하여 정확하고 수행 가능한 프로그램 조각을 추출하는 동적 프로그램 조각 추축 알고리즘을 제안한다. 각 문장에서 변경되는 변수와 참조되는 변수로 나누어서 변수 집합을 계산하고, 선언부에 있는 문장에 대해 변수-변수 관련성을 계산한다. 변수-변수 관련성을 계산할 때는 선언부의 변수가 다른 문장에서 변경되는 변수로 사용된 경우와 참조되는 변수로 사용된 경우를 별도로 조사하여 변경되는 변수 집합은 무조건 관련 집합에 포함시키고, 문장에서 참조되는 변수들은 문장들을 다시 비교하여 기준 변수와 관련된 문장만을 추출하여 관련 집합에 포함시킨다. 제안한 알고리즘은 C 언어를 대상으로 실험한 결과 정확하고 수행 가능한 동적 조각을 추출하였고, 기존의 방법들보다 관련 문자을 찾기 위한 문장의 비교횟수를 평균 42%까지 감소시켰다. 기준 변수가 많을수록 기준 변수와 관련이 없는 변수가 많을수록 문장의 비교 횟수가 현저하게 감소하였다.
This paper proposes a method for Korean comparative sentence classification which is a part of comparison mining. Comparison mining, one area of text mining, analyzes comparative relations from the enormous amount of text documents. Three-step process is needed for comparison mining - 1) identifying comparative sentences in the text documents, 2) classifying those sentences into several classes, 3) analyzing comparative relations per each comparative class. This paper aims at the second task. In this paper, we use transformation-based learning (TBL) technique which is a well-known learning method in the natural language processing. In our experiment, we classify comparative sentences into seven classes using TBL and achieve an accuracy of 80.01%.
Journal of the Korean Society for information Management
/
v.18
no.3
/
pp.159-178
/
2001
This paper presents an automatic text summarization model which selects representative sentences from sentence clusters to create a summary. Summary generation experiments were performed on two sets of test documents after learning the optimum environment from a training set. Centroid clustering method turned out to be the most effective in clustering sentences, and sentence weight was found more effective than the similarity value between sentence and cluster centroid vectors in selecting a representative sentence from each cluster. The result of experiments also proves that inverse sentence weight as well as title word weight for terms and location weight for sentences are effective in improving the performance of summarization.
보통 문장제(거리 ${\cdot}$ 속도 문제, 시계 문제, 농도 문제, 개수 세기, 측도 영역)는 초등학교부터 반복하면서 대학수학능력 시험에서는 외적 문제해결력을 측정하는 문장으로 나타난다. 문장제를 해결하는데는 사고가 여러 단계로 이루어져야 한다. 따라서 일반적으로 문장제는 난해하므로 조직적이고 전문적인 학습지도가 이루어져야 한다. 하지만 입시위주의 교육 등 여러 여건상 잘 이루어지지 않고 있는 것이 현실이다. 수학을 잘하는 학생이라도 문장제를 해결하지 못하는 경우가 많다. 본 연구에서는 문장제의 해결의 저해 요인을 완화시킬 수 있는 지도 방안으로서 Polya의 문제해결 전략을 이용하며, 실험반과 비교반의 학습 효과를 비교 분석하여 이를 통하여 효율적인 문장제 지도방안을 연구한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.