• Title/Summary/Keyword: 블리드 공기

Search Result 9, Processing Time 0.023 seconds

A Numerical Study on Transient Performance Behavior of a Turbofan Engine with Variable Inlet Guide Vane and Bleed Air Schedules (가변 입구 안내익과 블리드 공기 스케줄에 따른 터보팬 엔진에서의 천이 성능특성에 관한 수치연구)

  • Kim, Sangjo;Son, Changmin;Kim, Kuisoon;Kim, Myungho;Min, Seongki
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.5
    • /
    • pp.52-61
    • /
    • 2015
  • This paper performed a numerical study to analyse the transient performance behavior of a turbofan engine with variable inlet guide vane (IGV) and bleed air schedules. The low bypass ratio mixed flow turbofan engine was considered in this study. For modeling the compressor performance with IGV, the performance maps were generated by using a one-dimensional meanline analysis and feed to the engine simulation program. The IGV and bleed air according to the rotating speed were scheduled to satisfy 10% of surge margin at steady-state condition. The transient engine performance analysis was conducted with the schedules. The engine with IGV schedule showed a higher surge margin and lower turbine inlet temperature than the engine with bleed air schedule during the transient period.

A Dynamic Simulation and LQR Control for Performance Improvement of Small Gas Turbine Engine (소형 가스터빈엔진의 동적모사와 성능향상을 위한 LQR 제어)

  • 공창덕;기자영;김석균
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.1 no.1
    • /
    • pp.24-32
    • /
    • 1997
  • A nonlinear dynamic simulation of a small gas turbine engine was performed by using DYNGEN program with various environmental conditions. It was observed that the effect of the bleed air flow rate changed to overall engine performance. The real time linear model which was a function of engine rotor speed was resulted to be close to nonlinear simulation results. For optimal LQR controller, it was considered only fuel flow rate or both fuel flow rate and bleed air rate as inputs. In the comparison of both results, the LQR controller with multi input had better performance than that with single input.

  • PDF

A Dynamic Simulation and LQR Control for Performance Improvement of Small Turbojet Engine (소형 터보제트엔진의 동적모사와 성능향상을 위한 LQR 제어)

  • 공창덕;기자영;김석균
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1997.04a
    • /
    • pp.55-60
    • /
    • 1997
  • A nonlinear dynamic simulation was performed by using DYNGEN program with various environmental conditions. It was observed that the effect of the bleed air flow rate changed to overall engine performance. The real time linear model which was a function of rpm was resulted to be close to nonlinear simulation results. For optimal LQR controller, it was considered only fuel flow rate or both fuel flow rate and bleed air rate as inputs. In the comparison of both results, the LQR controller with multi input had better performance than that with single input.

  • PDF

SIMULINK^{$\circledR}$ Modeling of Turboprop Engine for the Performance Analysis (성능해석을 위한 터보프롭 엔진의 SIMULINK^{$\circledR}$ Modeling)

  • 노홍석;기자영;공창덕
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2001.04a
    • /
    • pp.76-79
    • /
    • 2001
  • SIMULINK^{$\circledR}$를 이용하여 항공기용 터보프롭 엔진을 모델링한 후 현재 KT-1의 추진기관인 PT6A-62 분리축 터보프롭엔진의 성능을 해석하였다. SIMULINK^{$\circledR}$ 모델의 검증을 위하여 상용해석프로그램인 GASTURB 와 비교한 결과 최대오차율 1.07% 이내로 확인되었다. 지상정지 조건에서 블리드 공기유량을 0에서 5%, 보기류 구동에 따른 출력손실을 0에서 20 hp로 가정하고 해석한 결과 축마력은 최대 0.68%감소하며 비연료소모율은 거의 영향을 받지 않음을 알 수 있었다.

  • PDF

A study on the burn-in test to accomplish high quality cockpit air of an ultra-sonic aircraft in the early stage of production (생산 초기 초음속 항공기 조종석의 고품질 공기 확보를 위한 burn-in test 연구)

  • Shin, Jae Hyuk;Park, Sung Jae;Seo, Dong Yeon;Jeong, Suheon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.10
    • /
    • pp.871-876
    • /
    • 2016
  • Abnormal odor similar with burning smell often appears at the cockpit in the beginning of ultra-sonic aircraft without air filter due to the heating of production materials remained at the bleed air duct. Sources of the odor should be removed by burn-in test before test flight in order to prevent pilot confuses order with emergency such as fire of engine. However, the present method cannot prevent abnormal odor completely at the high altitude flight because maximum temperature of flight is higher than it of burn-in-test. This paper suggests burn-in test improved based on the analysis of thermal conditions of high altitude flight. It is verified that the existing burn-in test cannot cover thermal conditions of high altitude flight due to the discontinuous flow control, high change rate of temperature per unit time and difference between limit temperature of condenser and turbine. In order to overcome the limitations of current methods, the new burn-in test with continuous flow control are suggested. The continuous flow control are achieved by ram air inlet control. The effect of suggested method are verified by ground tests and flight tests. The results show the bleed air temperature can cover the temperature of high altitude flight and prevent abnormal odor at the flight test.

Performance Simulation of Turboprop Engine using SIMULINK$\circledR$ (SIMULINK$\circledR$를 이용한 터보프롭 엔진의 성능모사)

  • 공창덕;노흥석
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.5 no.2
    • /
    • pp.44-50
    • /
    • 2001
  • After modeling an aircraft turboprop engine using SIMULINK$\circledR$, performance simulation of PT6A-62 engine, which is main power plant of KT-1, was performed. For validation, performance parameters of the SIMULIINK model were compared with the simulated results by GASTURB program. It was confirm that the results by the SIMULINK model were well agreed with those by GASTURB within 1.07%, It was assumed that installation losses were bleed-air exteraction with a range from 0% to 5%, and power for accessories with a range from 0 to 20hp. In this investigation, it was found that the shafthorsepower was decreased by maxium 0.68%, but specific fuel consumption ratio was not effected nearly by these losses.

  • PDF

A Study on Installed Performance Analysis Modelling for a Helicopter Propulsion System Considering Intake Loss (흡입구 손실을 고려한 헬리콥터 추진시스템의 장착성능 해석 모델에 관한 연구)

  • Kong, Chang-Duk;Koo, Young-Ju;Kho, Seong-Hee;Ki, Ja-Young;Cha, Bong-Jun;Yu, Hyeok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.05a
    • /
    • pp.263-267
    • /
    • 2008
  • In this work the realistic install performance analysis of a helicopter was performed together with power extraction enabling to operate auxiliary system as well as intake pressure loss, loss due to bleed air, etc. which must be considered in practical propulsion system's performance modelling to be installed to the airframe. The pressure loss occurring in intake was estimated from the intake performance map with relationships of Mach Number and pressure loss. In order to evaluate the proposed installed performance model, the experimental data for comparison must be needed when mounted in propulsion system. However because of lack of accessibility to such real data at the moment, the alternative way was made through comparison that the analysis results by the proposed model were compared with a wellknown commercial program GASTURB's analysis results. The validity of the proposed installed performance model was consequently confirmed because its average deferences from the GASTURB's results were within 0.5%.

  • PDF

A Study on Installed Performance Analysis Modelling for a Helicopter Propulsion System Considering Intake Loss (흡입구 손실을 고려한 헬리콥터 추진시스템의 장착성능 해석 모델에 관한 연구)

  • Kong, Chang-Duk;Kho, Seong-Hee;Ki, Ja-Young;Jun, Yong-Min;Ahn, Lee-Ki
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.12 no.1
    • /
    • pp.51-56
    • /
    • 2008
  • In this work the realistic install performance analysis of a helicopter was performed together with power extraction enabling to operate auxiliary system as well as intake pressure loss, loss due to bleed air, etc. which must be considered in practical propulsion system's performance modelling to be installed to the airframe. The pressure loss occurring in intake was estimated from the intake performance map with relationships of Mach Number and pressure loss. In order to evaluate the proposed installed performance model, the experimental data for comparison must be needed when mounted in propulsion system. However because of lack of accessibility to such real data at the moment, the alternative way was made through comparison that the analysis results by the proposed model were compared with a wellknown commercial program GASTURB's analysis results. The validity of the proposed installed performance model was consequently confirmed because its average deferences from the GASTURB's results were within 0.5%.

A LQR Controller Design for Performance Optimization of Medium Scale Commercial Aircraft Turbofan Engine (II) (중형항공기용 터보팬 엔진의 성능최적화를 위한 LQR 제어기 설계 (II))

  • 공창덕;기자영
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.2 no.3
    • /
    • pp.99-106
    • /
    • 1998
  • The performance of the turbofan engine, a medium scale civil aircraft which has been developing in Rep. of Korea, was analyzed and the control scheme for optimization the performance was studied. The dynamic and real-time linear simulation was performed in the previous study The result was that the fuel scedule of the step increase overshoot the limit temperature(3105 $^{\cire}R$) of the high pressure turbine and got small surge margine of the high pressure compressor. Therefore a control scheme such as the LQR(Linear Quadratic Regulator) was applied to optimizing the performance in this studies. The linear model was expected for designing controller and the real time linear model was developed to be closed to nonlinear simulation results. The system matrices were derived from sampling operating points in the scheduled range and then the least square method was applied to the interpolation between these sampling points, where each element of matrices was a function of the rotor speed. The control variables were the fuel flow and the low pressure compressor bleed air. The controlled linear model eliminated the inlet temperature overshoot of the high pressure turbine and obtained maximum surge margins within 0.55. The SFC was stabilized in the range of 0.355 to 0.43.

  • PDF