본 논문에서는 블록체인 기반 DID기술을 이용하여 원격교육에서 발생하는 학습데이터를 효율적으로 관리하기 위한 방법으로, 학습데이터 가중치를 고려한 DID 메타데이터관리방법을 제안하였다. 메타데이터의 식별자에 대하여 특정위치로 데이터 가중치를 검색하도록 하고 해당 가중치에 따라 처리방법을 다양화 할 수 있다. 본문에서는 블록체인의 Zero Knowledge Proof 방식 처리에 차별화를 두어 메타데이터를 처리하였으며 데이터 처리속도 및 데이터관리에 효율성높일 수 있다.
본 논문에서는 블록정합 알고리즘을 영상 블록들의 상관도 함수로 모델링하여, 고속 블록정합 방법을 위한 탐색 패턴을 유도하였으며, 이는 고속 블록정합 방법에서 주로 사용되는 다이아몬드 형태의 탐색 패턴에 대한 이론적인 기반을 제공한다. 이와 더불어, 능동적인 탐색 패턴과 물체의 움직임에 따른 통계적인 특성을 사용하여 새로운 고속 블록정합 움직임 예측방법을 제안하였다. 적절한 움직임 탐색 패턴을 얻기 위해 움직임 벡터와 영상간 블록들의 차이값 사이의 통계적인 관계를 이용하였다. 제안한 방법을 움직임 탐색 패턴을 능동적으로 변화시키면서 다른 고속 블록정합 방법들과 비교해 보면, 요구되는 탐색점의 개수를 감소시키면서 움직임 예측성능을 향상됨을 확인할 수 있었다.
본 논문에서는 새로운 문자 분할 알고리즘을 제안한다. 고전적인 문자 분할 알고리즘은 학술적인 문서영상과 같이 단순한 구조를 가진 문서영상을 대상으로 하여 좋은 성능을 보였지만 다양한 문자 크기와 색상, 그림, 복잡한 배경 등으로 구성된 문서영상에서는 좋지 못한 성능을 보인다. 최근에 제안고 있는 방법들은 복잡한 문서영상에서도 좋은 성능을 보이도록 다양한 기법들을 적용하여 우수한 성능을 보이고 있지만, 대부분의 방법들이 영상을 일정한 크기의 블록으로 나누어 문자분할을 하기 때문에 세밀한 부분에서는 성능이 어느 정도 한계를 보인다. 따라서 본 논문에서는 블록의 크기에 제한을 갖지 않는 새로운 방법으로서, watershed 알고리즘을 이용한 문자분할 방법을 제시한다. 구체적으로, watershed 알고리즘을 이용하여 문서영상의 구조(docstrum)를 파악하고 이를 기반으로 문자를 분할한다. 제안하는 방법은 크게 엣지 검출, distance transform, watershed 알고리즘을 이용한 docstrum 분석, 문자 분할의 네 단계를 거친다. 실험 결과 블록에 기반한 기존의 방법들이 놓치는 세밀한 부분에서도 제안된 알고리즘은 올바른 분할결과를 얻을 수 있음을 확인하였다.
기존의 블록기반 움직임 예측방법은 특히 저전송률 비디오 압축에 사용 될 경우 움직임 필드에서의 블록화 현상이나 불안정한 움직임 예측과 같은 문제를 수반한다. 본 논문은 이러한 단점을 극복하기 위해 H.263의 기존 블록기반 DCT부호화 구조를 최대한 유지하면서 비정형 삼각형 메쉬에 기반한 새로운 움직임 보상 방법을 수용할 수 있는 하나의 방법을 제안한다. 제안방법은 복원된 이전 프레임 영상을 최소의 제어점들을 이용해 표현하기 위해, 주어진 영상의 컨텐트에 적응적으로 삼각형 비정형 메쉬를 설정한다. 그리고 Affine변환에 기반한 매칭을 이용해, 설정된 각 제어점의 움직임벡터를 구한 후, 이를 이용해 각 메쉬를 Affine변환하여 예측된 현재 프레임을 얻는 전방향 움직임 보상을 제안한다. 이 방법은 컨텐트에 적응적으로 설정된 메쉬 정보를 보내지 않아도 되는 장점이 있다. 실제 비디오 데이터를 이용해 실험한 결과 제안방법이 객관적 및 주관적 화질 평가에서 기존의 블록기반 H.263 방법보다 개선되었음을 알 수 있다.
기존의 블록 기반 압축 센싱은 고정 블록 크기를 사용하여 신호를 복원하며, 영역별 신호의 특성에 적합한 블록 크기를 사용하지 못하여 복원 성능이 저하된다. 본 논문에서는 이 문제를 해결하기 위하여 블록 기반 압축 센싱에서 신호의 특성에 따라 블록 크기를 가변적으로 결정하여 복원 신호의 품질을 향상시키는 가변 블록 크기 기술을 제안한다. 제안한 방법은 여러 블록 크기로 신호를 복원하고, 프레임별로 각 복원한 신호의 자기 상관도를 측정하여 신호의 특성을 확인하고, 프레임의 블록 크기를 결정한다. 동일한 측정 데이터에 대하여 제안한 가변 블록 크기 방법이 기존의 고정 블록 크기 방법에 비하여 향상된 품질의 신호를 복원하는 것을 확인하였다.
본 논문에서는 웨이브렛 변환을 이용하여 블록기반 변환 부호화 영상에서의 블록화 현상을 반복적으로 제거하는 방법을 제안하였다. 제안된 방법에서는 블록화 현상이 수직, 수평 방향의 블록 경계를 따라 수직, 수평으로만 나타나는 점에 착안하여, 블록화 현상이 있는 영상 신호를 수직, 수평 방향의 분리적인 1차원 신호의 집합으로 간주하고 Gaussian 형태 함수의 1차 도함수를 모 웨이브렛으로 하는 1차원 웨이브렛 영역에서의 평균 자승 오차를 최소화시키는 필터로써 첫 번째 스케일 웨이브렛 영역의 블록 경계 위치에서의 분산이 다른 위치에 비하여 유달리 크게 나타나도록 하는 블록화 현상에 의한 신호 성분을 제거하는 과정과 양자화에 관한 블록 집합으로 투영하는 과정을 반복적으로 수행하여 블록화 현상이 제거된 영상을 얻는다. 실험결과, 제안된 방법은 0.56 - 1.07dB의 PSNR 성능 향상뿐만 아니라 에지 몽롱화가 없이 블록화 현상이 거의 제거된 주관적 화질 개선을 보였다.
본 논문에서는 프레임간 압축 영상의 열화 과정의 모델과, 동영상에 존재하는 블록화 현상을 제거하는 방법을 제안한다 BDCT기반으로 압축된 정지영상은 DCT계수를 양자화 하는 과정이 블록별로 처리되기 때문에, 블록 경계에 불연속이 발생한다. 동영상의 경우 블록 경계에서 불연속이 발생 할 뿐만 아니라 움직임 보상과정이 합쳐진 혼성 구조로 되어 있어서 블록 내부에서도 불연속이 존재하게 된다. 블록 영계만을 생각한 기존의 처리방법은 동영상의 처리에 있어 적합하지 못하다. 따라서 본 논문에서는 효율적인 블록화 현상 제거를 위해, 양방향 움직임 보상과 반화소 정밀도를 이용한 새로운 평활화 제약조건을 구성하고 차분 영역에서의 정규화 방법을 이용한 알고리듬을 제안한다.
본 논문에서는 블록 기반 실시간 계수 시스템을 제안한다. 계수 시스템은 쇼핑몰이나 대형건물의 출입구, 엘리베이터, 에스컬레이터 등과 같은 다양한 환경에 적용될 수 있다. 본 논문의 핵심은 세 부분으로 구분 할 수 있다. 첫째, 환경 변화에 강인한 배경 제거 기법, 둘째, 학습을 이용한 블록 기반 계수 결정 방법, 마지막으로 4 채널에서 실시간으로 처리가 가능한 시스템 구현이다. 환경 변화에 강인한 배경 제거 기법으로 MOG(mixture of gaussian) 방법을 적용하였으며, 블록 기반 계수 결정 방법은 영상을 $6{\times}12$개의 영역으로 구분하고, 학습 영상을 이용하여 각각의 블록에서 물체의 크기에 대한 평균과 분산을 계산하고 이를 저장하여 계수에 적용하는 방법을 제안하였으며, 마지막으로 4 채널에서 실시간으로 처리 하기 위하여 추출된 물체 각각을 구분하여 추적하는 것이 아니라 물체가 이동 중에 발생할 수 있는 여러 상황 즉 결합이나 분리되는 현상을 분석하여 계수 판단에 적용하였다. 제안된 방법을 이용하여 에스컬레이터, 복도 그리고 출입문등과 같이 조명환경과 그림자 상황 등이 변하는 환경에서 의 계수 정확도는 $90{\sim}94%$, 채널 당 처리 속도는 15 frames/sec 이상의 성능을 보였다.
K-means나 퍼지 군집화와 같은 전통적인 군집화 기법들이 원형(prototype)을 기반으로 하고 볼록한 형태의 집단들에 적합한 반면, 스펙트럼 군집화(spectral clustering)는 국부적인 유사성을 기반으로 전역적인 집단을 찾아내는 기법으로 오목한 형태의 집단들에도 적용할 수 있어 커널을 기반으로 하는 SVM과 더불어 각광을 받고 있다. 하지만 SVM이 그러하듯이 스펙트럼 군집화에서도 커널의 폭은 성능에 지대한 영향을 끼치는 요인으로, 이를 결정하기 위한 다양한 방법이 시도되었지만 여전히 휴리스틱에 의존하는 실정이다. 이 논문에서는 유사도 행렬이 보다 명백한 블록 대각 형태를 가지도록 하기 위해 국부적인 커널의 폭을 거리 히스토그램을 바탕으로 적응적으로 결정하는 방법을 제시한다. 제안한 방법은 스펙트럼 군집화에 사용되는 유사도 행렬(affinity matrix)이 블록 형태의 대각 행렬을 이룰 때 이상적인 결과를 낸다는 사실에 기반하고 있으며, 이를 위해서 전통적인 유클리디안 거리와 무작위 행보 거리(random walk distance)를 함께 사용한다. 제안한 방법은 기존의 방법들에서 사용하는 유사도 행렬에 비해 명확한 블록 대각 행렬을 나타내고 있음을 실험 결과를 통해 확인할 수 있다.
본 논문에서는 알려진 악성코드로부터 악의적인 행위 패턴을 정의하는 방법을 제안하고, 이를 기반으로 변형된 악성코드의 검출 방법을 제안한다. 악의적인 행위 패턴에 대한 정의는 Cross Reference를 기반으로 블록화 한 후 실행코드 블록의 호출 관계에 따른 그래프를 이용하여 정의하였다. 그리고 변형된 악성코드에 대한 검출은 실행코드 내부에서 악의적인 행동 패턴을 찾음으로써 판단한다. 제안된 방법에 대한 실험결과 변형된 악성코드의 검출이 가능함을 확인하였다.
이메일무단수집거부
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.