DOI QR코드

DOI QR Code

Variable Block Size for Performance Improvement of Compressed Sensing

압축 센싱의 성능 향상을 위한 가변 블록 크기 기술

  • Ham, Woo-Gyu (Dept. of Electronics Engineering, Kwangwoon University) ;
  • Ku, Jaseong (Dept. of Electronics Engineering, Kwangwoon University) ;
  • Ahn, Chang-Beom (Dept. of Electrical Engineering, Kwangwoon University) ;
  • Park, Hochong (Dept. of Electronics Engineering, Kwangwoon University)
  • Received : 2013.01.02
  • Published : 2013.04.25

Abstract

The conventional block-based compressed sensing uses a fixed block size for signal reconstruction, and the reconstructed signal is degraded because the block size suitable to the signal characteristics is not used. To solve this problem, in this paper, a variable block size method for compressed sensing is proposed that estimates the signal characteristics and selects a proper block size for each frame, thereby improving the quality of the reconstructed signal. The proposed method reconstructs the signal with different block sizes, analyzes the signal characteristics using correlation coefficients for each frame, and select the block size for the frame. It is confirmed that, with the same acquired data, the proposed method reconstructs the signal of higher quality than the conventional fixed block size method.

기존의 블록 기반 압축 센싱은 고정 블록 크기를 사용하여 신호를 복원하며, 영역별 신호의 특성에 적합한 블록 크기를 사용하지 못하여 복원 성능이 저하된다. 본 논문에서는 이 문제를 해결하기 위하여 블록 기반 압축 센싱에서 신호의 특성에 따라 블록 크기를 가변적으로 결정하여 복원 신호의 품질을 향상시키는 가변 블록 크기 기술을 제안한다. 제안한 방법은 여러 블록 크기로 신호를 복원하고, 프레임별로 각 복원한 신호의 자기 상관도를 측정하여 신호의 특성을 확인하고, 프레임의 블록 크기를 결정한다. 동일한 측정 데이터에 대하여 제안한 가변 블록 크기 방법이 기존의 고정 블록 크기 방법에 비하여 향상된 품질의 신호를 복원하는 것을 확인하였다.

Keywords

References

  1. Emmanuel Candès, Justin Romberg, and Terence Tao, "Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information," IEEE Trans. on Information Theory, 52(2) pp.489-509, February, 2006. https://doi.org/10.1109/TIT.2005.862083
  2. David Donoho, "Compressed sensing," IEEE Trans. on Information Theory, 52(4), pp.1289-1306, April, 2006. https://doi.org/10.1109/TIT.2006.871582
  3. E. J. Candes and M. B. Wakin, "An introduction to compressed sampling," IEEE Signal Processing Magazine 25, pp.21-30, 2008. https://doi.org/10.1109/MSP.2007.914731
  4. W. L. Chan, M. L. Moravec, R. G. Baraniuk and D. M. Mittleman, "Terahertz imaging with compressed sensing and phase retrieval," Optics Letter 33, pp.974-976, 2008. https://doi.org/10.1364/OL.33.000974
  5. W. L. Chan, K. Charan, D. Takhar, K. F. Kelly, R. G. Baraniuk and D. M. Mittleman, "A single-pixel terahertz imaging system based on compressed sensing," Appl. Phys. Lett. 93, 121105, 2008. https://doi.org/10.1063/1.2989126
  6. S.-H. Cho, S.-H. Lee, C. Nam-Gung, S.-J. Oh, J.-H. Son, H. Park, and C.-B. Ahn, "Fast terahertz reflection tomography using blockbased compressed sensing," Optics Express 19, pp.16401-16409, 2011. https://doi.org/10.1364/OE.19.016401
  7. B.-M. Hwang, S. H. Lee, W.-T. Lim, C.-B. Ahn, J.-H. Son and H. Park, "A fast spatial-domain terahertz imaging using blockbased compressed sensing," J. Infrared, Millimeter, Terahertz Waves 32, pp.1328-1336, 2011. https://doi.org/10.1007/s10762-011-9822-5
  8. 이동규, 김기준, 안창범, 박호종, "압축 센싱의 성능 향상을 위한 적응적 데이터 측정 기술," 전자공학회 논문지, 제49권 제9호, pp.85-91, 2012.09.
  9. C. Ye, S. Tak, Y. Han and H. W. Park, "Projection reconstruction MR imaging using FOCUSS," Magnetic Resonance in Medicine 57, pp.764-775, 2007. https://doi.org/10.1002/mrm.21202