• 제목/요약/키워드: 블록영역분류

검색결과 106건 처리시간 0.026초

오류 역전파 학습 알고리듬을 이용한 블록경계 영역에서의 적응적 블록화 현상 제거 알고리듬 (Adaptive Blocking Artifacts Reduction Algorithm in Block Boundary Area Using Error Backpropagation Learning Algorithm)

  • 권기구;이종원;권성근;반성원;박경남;이건일
    • 한국통신학회논문지
    • /
    • 제26권9B호
    • /
    • pp.1292-1298
    • /
    • 2001
  • 본 논문에서는 공간 영역에서의 블록 분류 (block classification)와 순방향 신경망 필터(feedforward neural network filter)를 이용한 블록 기반 부호화에서의 적응적 블록화 현상 제거 알고리듬을 제안하였다. 제안한 방법에서는 각 블록 경계를 인접 블록간의 통계적 특성을 이용하여 평탄 영역과 에지 영역으로 분류한 후, 각 영역에 대하여 블록화 현상이 발생하였다고 분류된 클래스에 대하여 적응적인 블록간 필터링을 수행한다. 즉, 평탄 영역으로 분류된 영역 중 블록화 현상이 발생한 영역은 오류 역전파 학습 알고리듬 (error backpropagation learning algorithm)에 의하여 학습된 2계층 (2-layer) 신경망 필터를 이용하여 블록화 현상을 제거하고, 복잡한 영역으로 분류된 영역 중 블록화 현상이 발생한 영역은 에지 성분을 보존하기 위하여 선형 내삽을 이용하여 블록간 인접 화소의 밝기 값만을 조정함으로써 블록화 현상을 제거한다. 모의 실험 결과를 통하여 제안한 방법이 객관적 화질 및 주관적 화질 측면에서 기존의 방법보다 그 성능이 우수함을 확인하였다.

  • PDF

블록 경계 영역 분류를 이용한 블록화 현상 제거 기법의 성능 비교 (Performance Comparison of Blocking Artifact Reduction Using a Block Boundary Region Classification)

  • 소현주;장익훈;김남철
    • 한국통신학회논문지
    • /
    • 제24권10B호
    • /
    • pp.1921-1936
    • /
    • 1999
  • 본 논문에서는 블록 기반 변환 부호화 영상에서 나타나는 블록화 현상을 분석하고 그 특성에 따라 각 블록 경계를 4개의 영역으로 분류하는 방법을 제안하였다. 그리고 제안한 블록 경계 영역 분류 방법을 이용하여 성능이 우수한 몇 가지 블록화 현상 제거 기법들의 성능을 비교하였다. 제안된 블록 경계 영역 분류 방법에서는 각 수평, 수직 블록 경계를 EQ 영역, BA 영역, 그리고 AE 영역의 4개의 영역으로 분류한다. 블록화 현상 제거기법으로는 LOT, Kim의 웨이브렛 영역에서의 필터링 방법, Yang의 POCS 방법, Paek의 POCS 방법, Jang의 CM 방법을 선택하였다. 실험결과, 제안한 블록 경계 영역 분류 방법으로 블록 경계의 영역들이 블록화 현상에 의한 불연속의 특성을 잘 나타내는 것을 알 수 있었다. 그리고 웨이블렛 변환을 이용하는 블록화 현상 제거 기법들이 대체적으로 우수한 성능을 나타냄을 알 수 있었다.

  • PDF

DCT와 정보 화소 밀도를 이용한 PDA로 획득한 명함 영상에서의 영역 해석 (Region Analysis of Business Card Images Acquired in PDA Using DCT and Information Pixel Density)

  • 김종흔;장익훈;김남철
    • 한국통신학회논문지
    • /
    • 제29권8C호
    • /
    • pp.1159-1174
    • /
    • 2004
  • 본 논문에서는 PDA에 장착된 카메라를 사용하여 획득한 명함 영상에 대한 효율적인 영역 해석 알고리듬을 제안한다. 제안된 방법은 크게 영역 분할, 정보 영역 분류, 문자 영역 분류의 3개 과정으로 구성된다. 영역 분할에서는 입력 명함 영상을 8${\times}$8 크기의 블록으로 나누고 각 블록을 저주파 대역에서의 정규화 된 DCT 계수의 에너지를 이용하여 정보 블록과 배경 블록으로 분류한 다음, 블록에 대한 영역 라벨링을 통하여 정보 영역과 배경 영역으로 분할한다. 정보 영역 분류에서는 각 정보 영역을 블록 신호의 수평, 수직 방향 에지 성분과 저주파 대역에서의 DCT 계수의 에너지 비와 이진화 된 정보 영역 내에서의 흑화소인 정보 화소의 밀도를 이용하여 문자 영역과 배경 영역으로 분류한다. 문자 영역 분류에서는 분류된 문자 영역을 정보 화소의 밀도와 평균 런 길이를 이용하여 다시 큰 문자와 작은 문자 영역으로 분류한다. 실험결과 제안된 영역 해석 방법은 여러 종류의 명함을 다양한 주변 여건에서 PDA로 획득한 시험 영상에 대하여 정보 영역과 배경 영역을 잘 분할하고, 정보 영역을 문자 영역과 그림 영역으로 잘 분류하며, 다시 문자 영역을 큰 문자와 작은 문자 영역으로 잘 분류함을 보였다 그리고 제안된 영역 분할 방법과 정보 영역 분류 방법은 기존의 방법들보다 각각 약 2.2-10.1%와 7.7%의 에러율 향상을 보였다.

지문 영상 분류를 위한 특이점 추출 알고리즘에 관한 연구 (A Study On Singular Points Extraction Algorithm for Finger Classification)

  • 오창섭;최경삼;조성원
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2000년도 추계학술대회 학술발표 논문집
    • /
    • pp.319-322
    • /
    • 2000
  • 본 논문에서는 지문영상으로부터 제안한 알고리즘을 이용하여 특이점(Core, Delta)을 추출한 후 특이점의 개수와 종류에 따라서 5가지 부류(arch, tented arch, left loop, right loop, whorl)로 지문영상을 분류하였다. 지문영상을 8*8블록과 16*16블록으로 분할한 후 3*3 Sobel 마스크를 씌워서 대표 방향을 구하였다. 또한 블록으로 분할한 영상으로부터 분산을 구하여 전경과 배경을 분리(segmentation)시켜 수행속도를 향상시켰다. 전처리 과정으로는 일정한 블록마다 임계값을 다르게 적용시키는 블록 이진화 기법을 사용하였으며 특이점을 추출하기 위해서 서로 크기가 다른 2개의 블록으로 영상을 분할하였다. 우선 8*8블록으로 영역을 분할한 후 방향 성분을 구하고 특이점들을 추출하였다. 이 경우 잡영 때문에 특이점이 너무 많이 추출되는 문제점이 있으므로 이러한 해결책으로 16*16블록으로 영역을 분할하여 방향 성분을 구하고 특이점을 추출하였다. 이렇게 다른 두 영역에서 동시에 나타나는 특이점을 후보 특이점으로 잡아서 그 후보 특이점 주변으로 Poincare 지수를 적용하여 확실한 특이점을 선택한 후 5가지의 지문 형태로 분류하였다. 실험결과 대부분의 지문영상에 대하여 강건한 분류 특성을 보이고 있음을 확인하였다.

  • PDF

블록 분류와 MLP를 이용한 블록 부호화 영상에서의 적응적 블록화 현상 제거 (Adaptive Blocking Artifacts Reduction in Block-Coded Images Using Block Classification and MLP)

  • 권기구;김병주;이석환;이종원;권성근;이건일
    • 대한전자공학회논문지SP
    • /
    • 제39권4호
    • /
    • pp.399-407
    • /
    • 2002
  • 본 논문에서는 블록 기반으로 부호화된 영상에 대하여 블록 분류 (block classification)와 다층 퍼셉트론 (multi-layer perceptron, MLP) 모델을 이용한 적응적 블록화 현상 제거 알고리듬을 제안하였다. 제안한 방법에서는 각 블록을 DCT 계수의 분포 특성에 따라 네 개의 클래스로 분류한 다음, 인접한 두 블록의 클래스 정보에 따라 수평 및 수직 블록 경계 영역에 대하여 적응적으로 신경망 필터를 적용한다. 즉, 평탄한 영역, 수평 방향 에지 영역, 수직 방향 에지 영역, 및 복잡한 영역에 대하여 각각 서로 다른 신경망 필터를 수평 및 수직 방향으로 적용하여 블록화 현상을 제거한다. 모의 실험 결과를 통하여 제안한 방법이 객관적 화질 및 주관적 화질 측면에서 기존의 방법보다 그 성능이 우수함을 확인하였다.

시공간 엔트로피 임계법을 이용한 형태학적 이동 객체 분할 (Moving Object Segmentation Using Spatio-temporal Entropic Thresholding)

  • 백경환;신민수;곽노윤
    • 한국멀티미디어학회:학술대회논문집
    • /
    • 한국멀티미디어학회 2003년도 춘계학술발표대회논문집
    • /
    • pp.410-414
    • /
    • 2003
  • 본 논문은 비디오 시퀀스에 카메라 패닝 보상과 2차원 시공간 엔트로피 임계법을 적용하여 추출한 객체포함영역을 대상으로 영상 분할을 수행하는 이동 객체 분할 기법에 관한 것이다. 우선, 웨이블렛 변환에 의해 구성한 피라미드 계층 구조상에서 카메라 패닝 벡터를 추정하여 전역 움직임을 보상한다. 이후, 전역 움직임이 보상된 기준영상을 대상으로 각 프레임간에서 2차원 시공간 엔트로피 임계법을 적용하여 이동 객체가 포함될 가능성이 있는 영역을 블록 단위로 추출한다. 다음으로, 2차원 시공간 엔트로피 입계법에 의해 분류된 영역을 토대로 각 블록을 움직임블록, 준 움직임 블록, 비 움직임 블록 중 어느 하나로 분류한 검색 테이블을 작성한다. 이어서, 검색 테이블을 참조하여 초기 탐색 계층 및 탐색 영역을 적응적으로 선정함으로써 피라미드 계층 구조상에서 효율적인 고속 움직임 추정을 수행하여 이동 객체에 해당하는 객체포함영역만을 추출한다. 최종적으로, 이렇게 추출된 객체포함영역에서 임계 기울기 영상을 정의한 후, 이를 기준 삼아 객체포함영역에 화소 단위의 형태학 기반 영상 분할 알고리즘을 적용함으로써 비디오 시퀀스에 포함된 이동 객체를 분할한다. 컴퓨터 시뮬레이션 결과를 통해 고찰할 때, 제안된 방법은 이동 객체에 대한 상대적으로 우수한 분할 특성을 제공할 수 있고, 특히 저대조 경계면의 분할 특성을 제고시키고 있음을 확인할 수 있다.

  • PDF

연산 영역 가변 알고리즘을 적용한 MPEG-4 부호화 기반의 적응적 오류 은닉 기법 (Adaptive Error Concealment Technique using a Variable Operating Region Algorithm based on MPEG-4 Coding)

  • 김병주;권기구;이석환;권성근;김봉석;이건일
    • 한국멀티미디어학회논문지
    • /
    • 제6권1호
    • /
    • pp.78-88
    • /
    • 2003
  • 본 논문에서는 연산 영역 가변 알고리즘을 적용한 MPEG-4 부호화 기반의 적응적 오류 은닉 (error concealment) 기법을 제안하였다. 이 알고리즘에서는 손실 블록을 그의 주변 정보를 이용하여 이들을 평탄블록 (flat block) 및 에지 블록 (edge block)으로 분류한다. 즉, 손실된 블록의 주변 블록들에 대해서 블록 경계 영역의 인접 화소들의 차를 이용하여 평탄 블록을 분류하고, 평탄 블록으로 분류되지 않은 블록들에 대해서는 인접 화소의 차가 정해진 임계값을 넘어서는 개수에 따라 가변적인 연산 영역 (variable operating region, VOR)을 설정한 후, Sobel 연산자를 적용하여 우세 에지 방향 성분을 추정한다. 이렇게 분류된 각 블록에 대하여 적응적 오류 은닉을 수행한다. 평탄 블록에 대해서는 시각적 성능 향상을 위해 평균값을 기반으로 한 가중치에 따른 양선형 보간(mean based weighted bilinear interpolation, MWBLI) 방법을 적용하고, 에지 블록에 대해서는 8가지 방향에 대하여 경계 픽셀을 이용한 방향성 보간 (boundary directional interpolation, BDI) 방법을 적용하여 오류 은닉을 수행한다. 모의 실험 결과를 통하여 제안한 방법이 객관적 화질 및 주관적 화질 측면에서 기존의 방법보다 그 성능이 우수함을 확인하였다.

  • PDF

2단계 MAD 움직임 탐색을 이용한 MPEG 동영상 부호화 (MPEG Video Coding Using 2-Step MAD Motion Vector Search)

  • 이경환;류권열
    • 한국멀티미디어학회:학술대회논문집
    • /
    • 한국멀티미디어학회 2001년도 춘계학술발표논문집
    • /
    • pp.120-123
    • /
    • 2001
  • MPEG 동영상 부호화 중 BMA를 이용한 움직임 탐색과정에서, 왜곡척도로 MAD를 사용하는데 이는 블록 내 모든 화소에 동일하게 적용되므로 구획화 현상 등을 일으켜 주관적인 화질을 떨어뜨리는 원인이 된다. 본 논문에서는 블록 내 화소를 경계 영역과 내부 영역으로 나누어 경계 영역에 대한 MAD를 먼저 구하고, 문턱치를 비교하여 인터블록과 인트라 블록으로 구분하고 인터로 분류된 블록에 대해서만 내부 영역의 MAD를 구하여 최종 보상블록을 결정함으로써 화질을 개선하고 계산량을 줄일 수 있었다.

  • PDF

블록 경계 영역 특성을 이용한 블록 부호화 영상에서의 양자화 잡음 제거 (Quantization Noise Reduction in Block-Coded Video Using the Characteristics of Block Boundary Area)

  • 권기구;양만석;마진석;임성호;임동선
    • 정보처리학회논문지B
    • /
    • 제12B권3호
    • /
    • pp.223-232
    • /
    • 2005
  • 본 논문에서는 블록 기반으로 부호화된 영상에 대하여 블록 경계 영역 특성에 따른 적응적 필터링을 이용한 양자화 잡음 제거 알고리즘을 제안하였다 제안한 방법에서는 블록 경계에 인접한 네 개 화소들의 통계적 특성을 이용하여 각 블록 경계 영역을 평탄 부영역(smooth sub-region)과 복잡 부영역(complex sub-region)으로 분류한 후, 인접 블록간 영역 특성을 이용하여 서로 다른 블록간 필터링을 수행한다. 먼저 인접 블록 모두 평탄 부영역인 경우에는 평탄 블록 경계 영역 중 블록화 현상이 발생하지 않은 영역도 존재하기 때문에 계산량을 줄이기 위하여 평탄 영역 중 블록화 현상이 발생한 영역만을 검출하여 필터링을 수행한다. 그리고, 두 부영역이 서로 다른 부영역인 경우에 대하여서는 기존의 방법들과는 달리 실제 에지 성분을 보존하면서 블록화 현상과 에지 주위에서 발생하는 링잉 현상을 동시에 제거하기 위하여 인접 블록의 영역 특성에 따라 적응적으로 일차원 필터링을 수행한다. 두 부영역이 모두 복잡 부영역일 경우에는 블록화 현상을 제거하면서 실제 에지를 보존하기 위하여 블록화 강도 및 양자화 파라미터에 따라 블록 경계 영역의 두 화소에 대하여 필터링을 수행한다. 모의실험 결과를 통하여 제안한 방법이 객관적 화질 및 주관적 화질 측면에서 기존의 방법보다 그 성능이 우수함을 확인하였다.

변환영역에서의 지능형 분류벡터양자화를 이용한 영상압축 (Image Compression using an Intelligne Classified Vector Quantization Method in Transform Domain)

  • 이현수;공성곤
    • 한국지능시스템학회논문지
    • /
    • 제7권4호
    • /
    • pp.18-28
    • /
    • 1997
  • 이 논문에서는 영상데이터를 여러개의 영상블록들로 나누고 이산 코사인변환 영역에서 물체의 에지에 해당하는 영상블록을 에지방향을 고려하여 적절히 분류함으로써 영상데이터를 효과적을 압축하였다. 벡터양자화에 의한 영상데이터의 압축은 높은 압축률을 실현할 수 있지만 영상내 물체의 에지부근이 손상되어 시각적인 화질이 저하되는 단점이 있다. 높은 압축률을 유지하면서도 시각적인 화질의 열화를 피하기 위하여 영상블록의 이산 코사인변환계수의 에너지 분포에 따라 에지블록을 8개의 부류로 분류하였다. 또한 이 분류과정을 통하여 얻어진 데이터를 가지고 신경회로망을 학습하여 구현한 에지블록의 분류과정과 성능을 비교하였다. 에너지분포에 의한 에지분류방법과 신경망으로 학습한 분류과정은 에지특성벡터에 의한 분류벡터양자화에 비해 더 높은 PSNR과 시각적으로 좋은 화질을 보여주었다.

  • PDF