본 논문에서는 공간 영역에서의 블록 분류 (block classification)와 순방향 신경망 필터(feedforward neural network filter)를 이용한 블록 기반 부호화에서의 적응적 블록화 현상 제거 알고리듬을 제안하였다. 제안한 방법에서는 각 블록 경계를 인접 블록간의 통계적 특성을 이용하여 평탄 영역과 에지 영역으로 분류한 후, 각 영역에 대하여 블록화 현상이 발생하였다고 분류된 클래스에 대하여 적응적인 블록간 필터링을 수행한다. 즉, 평탄 영역으로 분류된 영역 중 블록화 현상이 발생한 영역은 오류 역전파 학습 알고리듬 (error backpropagation learning algorithm)에 의하여 학습된 2계층 (2-layer) 신경망 필터를 이용하여 블록화 현상을 제거하고, 복잡한 영역으로 분류된 영역 중 블록화 현상이 발생한 영역은 에지 성분을 보존하기 위하여 선형 내삽을 이용하여 블록간 인접 화소의 밝기 값만을 조정함으로써 블록화 현상을 제거한다. 모의 실험 결과를 통하여 제안한 방법이 객관적 화질 및 주관적 화질 측면에서 기존의 방법보다 그 성능이 우수함을 확인하였다.
본 논문에서는 블록 기반 변환 부호화 영상에서 나타나는 블록화 현상을 분석하고 그 특성에 따라 각 블록 경계를 4개의 영역으로 분류하는 방법을 제안하였다. 그리고 제안한 블록 경계 영역 분류 방법을 이용하여 성능이 우수한 몇 가지 블록화 현상 제거 기법들의 성능을 비교하였다. 제안된 블록 경계 영역 분류 방법에서는 각 수평, 수직 블록 경계를 EQ 영역, BA 영역, 그리고 AE 영역의 4개의 영역으로 분류한다. 블록화 현상 제거기법으로는 LOT, Kim의 웨이브렛 영역에서의 필터링 방법, Yang의 POCS 방법, Paek의 POCS 방법, Jang의 CM 방법을 선택하였다. 실험결과, 제안한 블록 경계 영역 분류 방법으로 블록 경계의 영역들이 블록화 현상에 의한 불연속의 특성을 잘 나타내는 것을 알 수 있었다. 그리고 웨이블렛 변환을 이용하는 블록화 현상 제거 기법들이 대체적으로 우수한 성능을 나타냄을 알 수 있었다.
본 논문에서는 PDA에 장착된 카메라를 사용하여 획득한 명함 영상에 대한 효율적인 영역 해석 알고리듬을 제안한다. 제안된 방법은 크게 영역 분할, 정보 영역 분류, 문자 영역 분류의 3개 과정으로 구성된다. 영역 분할에서는 입력 명함 영상을 8${\times}$8 크기의 블록으로 나누고 각 블록을 저주파 대역에서의 정규화 된 DCT 계수의 에너지를 이용하여 정보 블록과 배경 블록으로 분류한 다음, 블록에 대한 영역 라벨링을 통하여 정보 영역과 배경 영역으로 분할한다. 정보 영역 분류에서는 각 정보 영역을 블록 신호의 수평, 수직 방향 에지 성분과 저주파 대역에서의 DCT 계수의 에너지 비와 이진화 된 정보 영역 내에서의 흑화소인 정보 화소의 밀도를 이용하여 문자 영역과 배경 영역으로 분류한다. 문자 영역 분류에서는 분류된 문자 영역을 정보 화소의 밀도와 평균 런 길이를 이용하여 다시 큰 문자와 작은 문자 영역으로 분류한다. 실험결과 제안된 영역 해석 방법은 여러 종류의 명함을 다양한 주변 여건에서 PDA로 획득한 시험 영상에 대하여 정보 영역과 배경 영역을 잘 분할하고, 정보 영역을 문자 영역과 그림 영역으로 잘 분류하며, 다시 문자 영역을 큰 문자와 작은 문자 영역으로 잘 분류함을 보였다 그리고 제안된 영역 분할 방법과 정보 영역 분류 방법은 기존의 방법들보다 각각 약 2.2-10.1%와 7.7%의 에러율 향상을 보였다.
본 논문에서는 지문영상으로부터 제안한 알고리즘을 이용하여 특이점(Core, Delta)을 추출한 후 특이점의 개수와 종류에 따라서 5가지 부류(arch, tented arch, left loop, right loop, whorl)로 지문영상을 분류하였다. 지문영상을 8*8블록과 16*16블록으로 분할한 후 3*3 Sobel 마스크를 씌워서 대표 방향을 구하였다. 또한 블록으로 분할한 영상으로부터 분산을 구하여 전경과 배경을 분리(segmentation)시켜 수행속도를 향상시켰다. 전처리 과정으로는 일정한 블록마다 임계값을 다르게 적용시키는 블록 이진화 기법을 사용하였으며 특이점을 추출하기 위해서 서로 크기가 다른 2개의 블록으로 영상을 분할하였다. 우선 8*8블록으로 영역을 분할한 후 방향 성분을 구하고 특이점들을 추출하였다. 이 경우 잡영 때문에 특이점이 너무 많이 추출되는 문제점이 있으므로 이러한 해결책으로 16*16블록으로 영역을 분할하여 방향 성분을 구하고 특이점을 추출하였다. 이렇게 다른 두 영역에서 동시에 나타나는 특이점을 후보 특이점으로 잡아서 그 후보 특이점 주변으로 Poincare 지수를 적용하여 확실한 특이점을 선택한 후 5가지의 지문 형태로 분류하였다. 실험결과 대부분의 지문영상에 대하여 강건한 분류 특성을 보이고 있음을 확인하였다.
본 논문에서는 블록 기반으로 부호화된 영상에 대하여 블록 분류 (block classification)와 다층 퍼셉트론 (multi-layer perceptron, MLP) 모델을 이용한 적응적 블록화 현상 제거 알고리듬을 제안하였다. 제안한 방법에서는 각 블록을 DCT 계수의 분포 특성에 따라 네 개의 클래스로 분류한 다음, 인접한 두 블록의 클래스 정보에 따라 수평 및 수직 블록 경계 영역에 대하여 적응적으로 신경망 필터를 적용한다. 즉, 평탄한 영역, 수평 방향 에지 영역, 수직 방향 에지 영역, 및 복잡한 영역에 대하여 각각 서로 다른 신경망 필터를 수평 및 수직 방향으로 적용하여 블록화 현상을 제거한다. 모의 실험 결과를 통하여 제안한 방법이 객관적 화질 및 주관적 화질 측면에서 기존의 방법보다 그 성능이 우수함을 확인하였다.
본 논문은 비디오 시퀀스에 카메라 패닝 보상과 2차원 시공간 엔트로피 임계법을 적용하여 추출한 객체포함영역을 대상으로 영상 분할을 수행하는 이동 객체 분할 기법에 관한 것이다. 우선, 웨이블렛 변환에 의해 구성한 피라미드 계층 구조상에서 카메라 패닝 벡터를 추정하여 전역 움직임을 보상한다. 이후, 전역 움직임이 보상된 기준영상을 대상으로 각 프레임간에서 2차원 시공간 엔트로피 임계법을 적용하여 이동 객체가 포함될 가능성이 있는 영역을 블록 단위로 추출한다. 다음으로, 2차원 시공간 엔트로피 입계법에 의해 분류된 영역을 토대로 각 블록을 움직임블록, 준 움직임 블록, 비 움직임 블록 중 어느 하나로 분류한 검색 테이블을 작성한다. 이어서, 검색 테이블을 참조하여 초기 탐색 계층 및 탐색 영역을 적응적으로 선정함으로써 피라미드 계층 구조상에서 효율적인 고속 움직임 추정을 수행하여 이동 객체에 해당하는 객체포함영역만을 추출한다. 최종적으로, 이렇게 추출된 객체포함영역에서 임계 기울기 영상을 정의한 후, 이를 기준 삼아 객체포함영역에 화소 단위의 형태학 기반 영상 분할 알고리즘을 적용함으로써 비디오 시퀀스에 포함된 이동 객체를 분할한다. 컴퓨터 시뮬레이션 결과를 통해 고찰할 때, 제안된 방법은 이동 객체에 대한 상대적으로 우수한 분할 특성을 제공할 수 있고, 특히 저대조 경계면의 분할 특성을 제고시키고 있음을 확인할 수 있다.
본 논문에서는 연산 영역 가변 알고리즘을 적용한 MPEG-4 부호화 기반의 적응적 오류 은닉 (error concealment) 기법을 제안하였다. 이 알고리즘에서는 손실 블록을 그의 주변 정보를 이용하여 이들을 평탄블록 (flat block) 및 에지 블록 (edge block)으로 분류한다. 즉, 손실된 블록의 주변 블록들에 대해서 블록 경계 영역의 인접 화소들의 차를 이용하여 평탄 블록을 분류하고, 평탄 블록으로 분류되지 않은 블록들에 대해서는 인접 화소의 차가 정해진 임계값을 넘어서는 개수에 따라 가변적인 연산 영역 (variable operating region, VOR)을 설정한 후, Sobel 연산자를 적용하여 우세 에지 방향 성분을 추정한다. 이렇게 분류된 각 블록에 대하여 적응적 오류 은닉을 수행한다. 평탄 블록에 대해서는 시각적 성능 향상을 위해 평균값을 기반으로 한 가중치에 따른 양선형 보간(mean based weighted bilinear interpolation, MWBLI) 방법을 적용하고, 에지 블록에 대해서는 8가지 방향에 대하여 경계 픽셀을 이용한 방향성 보간 (boundary directional interpolation, BDI) 방법을 적용하여 오류 은닉을 수행한다. 모의 실험 결과를 통하여 제안한 방법이 객관적 화질 및 주관적 화질 측면에서 기존의 방법보다 그 성능이 우수함을 확인하였다.
MPEG 동영상 부호화 중 BMA를 이용한 움직임 탐색과정에서, 왜곡척도로 MAD를 사용하는데 이는 블록 내 모든 화소에 동일하게 적용되므로 구획화 현상 등을 일으켜 주관적인 화질을 떨어뜨리는 원인이 된다. 본 논문에서는 블록 내 화소를 경계 영역과 내부 영역으로 나누어 경계 영역에 대한 MAD를 먼저 구하고, 문턱치를 비교하여 인터블록과 인트라 블록으로 구분하고 인터로 분류된 블록에 대해서만 내부 영역의 MAD를 구하여 최종 보상블록을 결정함으로써 화질을 개선하고 계산량을 줄일 수 있었다.
본 논문에서는 블록 기반으로 부호화된 영상에 대하여 블록 경계 영역 특성에 따른 적응적 필터링을 이용한 양자화 잡음 제거 알고리즘을 제안하였다 제안한 방법에서는 블록 경계에 인접한 네 개 화소들의 통계적 특성을 이용하여 각 블록 경계 영역을 평탄 부영역(smooth sub-region)과 복잡 부영역(complex sub-region)으로 분류한 후, 인접 블록간 영역 특성을 이용하여 서로 다른 블록간 필터링을 수행한다. 먼저 인접 블록 모두 평탄 부영역인 경우에는 평탄 블록 경계 영역 중 블록화 현상이 발생하지 않은 영역도 존재하기 때문에 계산량을 줄이기 위하여 평탄 영역 중 블록화 현상이 발생한 영역만을 검출하여 필터링을 수행한다. 그리고, 두 부영역이 서로 다른 부영역인 경우에 대하여서는 기존의 방법들과는 달리 실제 에지 성분을 보존하면서 블록화 현상과 에지 주위에서 발생하는 링잉 현상을 동시에 제거하기 위하여 인접 블록의 영역 특성에 따라 적응적으로 일차원 필터링을 수행한다. 두 부영역이 모두 복잡 부영역일 경우에는 블록화 현상을 제거하면서 실제 에지를 보존하기 위하여 블록화 강도 및 양자화 파라미터에 따라 블록 경계 영역의 두 화소에 대하여 필터링을 수행한다. 모의실험 결과를 통하여 제안한 방법이 객관적 화질 및 주관적 화질 측면에서 기존의 방법보다 그 성능이 우수함을 확인하였다.
이 논문에서는 영상데이터를 여러개의 영상블록들로 나누고 이산 코사인변환 영역에서 물체의 에지에 해당하는 영상블록을 에지방향을 고려하여 적절히 분류함으로써 영상데이터를 효과적을 압축하였다. 벡터양자화에 의한 영상데이터의 압축은 높은 압축률을 실현할 수 있지만 영상내 물체의 에지부근이 손상되어 시각적인 화질이 저하되는 단점이 있다. 높은 압축률을 유지하면서도 시각적인 화질의 열화를 피하기 위하여 영상블록의 이산 코사인변환계수의 에너지 분포에 따라 에지블록을 8개의 부류로 분류하였다. 또한 이 분류과정을 통하여 얻어진 데이터를 가지고 신경회로망을 학습하여 구현한 에지블록의 분류과정과 성능을 비교하였다. 에너지분포에 의한 에지분류방법과 신경망으로 학습한 분류과정은 에지특성벡터에 의한 분류벡터양자화에 비해 더 높은 PSNR과 시각적으로 좋은 화질을 보여주었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.