• Title/Summary/Keyword: 블레이드 파손

Search Result 37, Processing Time 0.02 seconds

Research Survey of the Containment Case for Damage Protection from Blade Fragments (블레이드 파편 봉쇄를 위한 컨테인먼트 케이스 연구 동향)

  • Chae, Seungho;Ahn, Sanghyeon;Lee, Soo-Yong;Roh, Jin-Ho
    • Journal of Aerospace System Engineering
    • /
    • v.14 no.3
    • /
    • pp.60-68
    • /
    • 2020
  • If a broken blade in the aircraft engine penetrates the casing and ejects outside the aircraft, it will impact the fuselage, threatening the safety of the passengers. Thus, the development of a engine case should be certified for stability evaluation by the Aviation Administration. In this paper, we investigated the requirements and development technology for the containment certification of the engine casing necessary for the independent engine development in the country. An experimental/analytical method has been identified to summarize the contact safety requirements presented by the U.S. and European aviation agencies to verify the containment of debris in the casing corresponding to this certification. Also, we analyzed recent research on the containment casing and verification methods in casing development.

Reliability Analysis of Gas Turbine Engine Blades (가스터빈 블레이드의 신뢰성 해석)

  • Lee, Kwang-Ju;Rhim, Sung-Han;Hwang, Jong-Wook;Jung, Yong-Wun;Yang, Gyae-Byung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.12
    • /
    • pp.1186-1192
    • /
    • 2008
  • The reliability of gas turbine engine blades was studied. Yield strength, Young’s modulus, engine speed and gas temperature were considered as statistically independent random variables. The failure probability was calculated using five different methods. Advanced Mean Value Method was the most efficient without significant loss in accuracy. When random variables were assumed to have normal, lognormal and Weibull distributions with the same means and standard deviations, the CDF of limit state equation did not change significantly with the distribution functions of random variables. The normalized sensitivity of failure probability with respect to standard deviations of random variables was the largest with gas temperature. The effect of means and standard deviations of random variables was studied. The increase in the mean of gas temperature and the standard deviation of engine speed increased the failure probability the most significantly.

The Aerodynamic Characteristics of Shape Deformation of Airfoil according to Field Repair of MW-Class Wind Turbine Blade (MW급 풍력 Blade의 Field수리로 인한 Airfoil의 형상 변형에 따른 공력특성)

  • Yu, Hong-Seok;Lee, Jang-Chang
    • Proceeding of EDISON Challenge
    • /
    • 2014.03a
    • /
    • pp.654-658
    • /
    • 2014
  • 풍력발전은 재생에너지로써 유망한 대체 에너지원으로 각광받고 있으며, 국내에서는 이미 영덕, 영양 등의 풍력단지가 가동 중에 있다. 그러나 장기간 사용되어온 터빈이 반 이상이며, 그 중에서도 바람의 영향을 많이 받는 블레이드는 끝단 Tip이 벌어지는 파손이 발생하곤 한다. Blade Field의 유지보수를 통해 수명연장이 가능하나, 형상변화로 공력특성에 영향을 미치게 된다. 본 연구에서는 MEXICO 터빈용 블레이드의 Tip부분에 대해서 EDISON을 활용하여, 수리로 인해 변경된 Blade의 공력특성 변화를 분석하였다. 형상변경은 상용 프로그램 Pontwise로 작업했으며, 익형 주위의 유동을 2D비압축성 유동으로 가정하고 EDISON CFD의 2D_Incomp-2.1_P solver를 수치해석을 수행하였다.

  • PDF

A Study on the Structural Optimum Design Method of Composite Rotor Blade Cross-Section using Genetic Algorithm (유전자 알고리즘을 이용한 복합재 로터 블레이드 단면 구조 최적설계방법에 관한 연구)

  • Won, You-Jin;Lee, Soo-Yong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.4
    • /
    • pp.275-283
    • /
    • 2013
  • In this paper, the structural optimum design method of composite rotor blade cross-section was investigated with the genetic algorithm. An auto-mesh generation program was developed for iterative calculations of optimum design, and stresses in the blade cross-section were analyzed by VABS (variational asymptotic beam sectional analysis) program. Minimum mass of rotor blade was defined as an object function, and stress failure index, center mass and blade minimum mass per unit length were chosen as constraints. Finally, design parameters such as the thickness and layup angles of a skin, and the thickness, position and width of a torsion box were determined through the structural optimum design method of composite rotor blade cross-section presented in this paper.

Blade Containment (엔진케이스의 블레이드 컨테인먼트)

  • Kim, Jee-Soo;Park, Ki-Hoon;Sung, Ok-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.04a
    • /
    • pp.414-417
    • /
    • 2011
  • On the basis of the paper described herein, rotor blade failure in the compressor, gas generator turbine, and power turbine and the resulting internal damage is contained within the peripheral hardware and engine casings. For the safety reason, the blade containment was regulated by aviation authority. For reducing the weight of the case, a heaviest single component of a jet engine, the blade containment capability was analyzed by engine manufacturer. The procedure established for containment design involves an energy balance method based on the comparison of the kinetic energy of released blade and the strain energy of the containment zone. The LS-DYNA simulation can also be introduced to predict behavior of released blade and case. All of the analytic and numerical result are described ${\ldots}$.

  • PDF

Fatigue Life Evaluation of Fiber Reinforced Composite Rotor Blades Considering Impact Damages (충격손상을 고려한 섬유강화 복합재 로터 블레이드의 피로수명 평가)

  • Kee, Young-Jung;Park, Jae-Hun;Kim, Sung-Man;Kim, Gi-Hun
    • Journal of Aerospace System Engineering
    • /
    • v.14 no.spc
    • /
    • pp.22-30
    • /
    • 2020
  • Composite rotor blades for rotorcraft have an intrinsic vulnerability to foreign object impact from its inherent structural characteristics of insufficient strength in the thickness direction, which may easily lead to internal structure damage. Therefore, defects and strength reducing effects caused by foreign object impact should be considered in fatigue evaluation of composite blades. For this purpose, the flaw tolerant safe-life and fail-safe concepts were adopted in fatigue evaluation since 1980s, and recently those concepts have been replaced by the damage tolerance concept. In this paper, the relevant standards for fatigue evaluation are analyzed focusing on fiber reinforced composite rotor blades used in rotorcraft. In addition, fatigue evaluation procedure of composite blades considering impact damages is proposed by reviewing the practices implemented through domestic development projects.

A Study on Failure Analysis of Turbine Blade using AFM and FEM (AFM과 유한요소법을 이용한 터빈 블레이드의 파손해석에 관한 연구)

  • 최우성;이동우;홍순혁;조석수;주원식
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.489-493
    • /
    • 2000
  • Turbine blade has trouble of cracking at root region. Fracture surface of blade root is surveyed by SEM and AFM to clear relation between fracture mechanical parameter and surface parameter (striation width and surface roughness). Service stress is predicted by maximum height roughness $R_{max}$, on fractured surface and stress analysis on turbine blade. It is to thought that turbine blade is fractured by abnormal condition such as incorrect fittings between pin and pin hole but isn't fractured by normal service conditions such as steam pressure, centrifugal force and torsional force.

  • PDF

A Study on Failure Analysis of Turbine Blade Using Surface Roughness and FEM (표면거칠기와 유한요소법을 이용한 터빈 블레이드의 파손해석에 관한 연구)

  • 홍순혁;이동우;이선봉;조석수;주원식
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.6
    • /
    • pp.170-177
    • /
    • 2001
  • Turbine blade is subject to torsional load by torsion-mount, centrifugal load by rotation of rotor and repeated bending load by steam pressure. Turbine with partially cracked blade has normal working condition at initial repair time but vibratory working condition at middle repair time due to crack growth. Finite element analysis on turbine blade indicates that repeated bending load out of all loads is the most important factor on fatigue strength of turbine blade. Therefore, this study shows root mean square roughness has linear relation with stress intensity factor range in 12% Cr steel and can predict loading condition of fractured turbine blade.

  • PDF

Feasibility Study on Packaged FBG Sensors for Debonding Monitoring of Composite Wind Turbine Blade (풍력발전기 복합재 블레이드의 접착 분리 모니터링을 위한 패키징 광섬유 브래그 격자 센서 탐촉자의 사용성 검토)

  • Kwon, Il-Bum;Choi, Ki-Sun;Kim, Geun-Jin;Kim, Dong-Jin;Huh, Yong-Hak;Yoon, Dong-Jin
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.31 no.4
    • /
    • pp.382-390
    • /
    • 2011
  • Smart sensors embedable in composite wind turbine blades have been required to be researched for monitoring the health status of large wind turbine blades during real-time operation. In this research, the feasibility of packaged FBG sensor probes was studied through the experiments of composite blade trailing edge specimens in order to detect cracking and debonding damages. The instants of cracking and debonding generated in the shear web were confirmed by rapid changes of the wavelength shifts from the bare FBG sensor probes. Packaged FBG sensor probes were proposed to remove the fragile property of bare FBG sensor probes attached on composite wind blade specimens. Strain and temperature sensitivity of fabricated probes installed on the skin of blade specimen were almost equal to those of a bare FBG sensor. Strain sensitivity was measured to be ${\mu}{\varepsilon}$/pm in a strain range from to 0 to 600 ${\mu}{\varepsilon}$, and the calculated temperature sensitivity was to be 48 pm/$^{\circ}C$ in the heating test up to 80 degree.

Shape Optimization and Reliability Analysis of the Dovetail of the Disk of a Gas Turbine Engine (가스터빈엔진 디스크의 도브테일 형상 최적화와 신뢰도 해석)

  • Huh, Jae-Sung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.4
    • /
    • pp.379-384
    • /
    • 2014
  • The most critical rotating parts of a gas turbine engine are turbine blades and disc, given that they must operate under severe conditions such as high turbine inlet temperature, high speeds, and high compression ratios. Owing to theses operating conditions and high rotational speed energy, some failures caused by turbine disks and blades are categorized into catastrophic and critical, respectively. To maximize the margin of structural integrity, we aim to optimize the vulnerable area of disc-blade interface region. Then, to check the robustness of the obtained optimized solution, we evaluated structural reliability under uncertainties such as dimensional tolerance and fatigue life variant. The results highlighted the necessity for and limitations of optimization which is one of deterministic methods, and pointed out the requirement for introducing reliability-based design optimization which is one of stochastic methods. Thermal-structural coupled-filed analysis and contact analysis are performed for them.