• 제목/요약/키워드: 브레이크디스크

검색결과 199건 처리시간 0.027초

자유 낙하 윈치용 브레이크 디스크의 구조해석 및 최적설계 (Optimization and Structure Analysis of Brake Disc for Free-fall Winch)

  • 구현곤;김진우;원천;송정일
    • 한국기계가공학회지
    • /
    • 제11권3호
    • /
    • pp.55-61
    • /
    • 2012
  • The structure of winch brake disk was successfully designed and developed based on sizing optimization. In this research, static analysis was performed by commercial software ANSYS v12.0. To simulate the working process of disk brake, the real properties of materials and working conditions were considered. Based on the results of the static structural analysis, the existing designs of the brake discs were optimized. Among existing designs, there are three cases that have achieved an efficient light weight around 200g. As a result, the optimized weight of each case was 3.41kg, 3.42kg, and 3.44kg, respectively. Finally, through prototyping and performance testing, the stability of the optimized brake disc was verified. Although, this free-fall winch brake disk had been developed in design and evaluation techniques, more detailed plans for developing the disk brake structure were also proposed as a further study based on this research.

F-16 B32 전투기용 브레이크 디스크 소재의 물성특성 연구 (Characteristics of Friction Materials for Brake Disc in F-16 B32 Fighter)

  • 감문갑;김원일;김태규
    • 한국기계가공학회지
    • /
    • 제6권3호
    • /
    • pp.98-104
    • /
    • 2007
  • The carbon fiber reinforced carbon composite (CFRC) materials are necessary for the advanced industries that require the thermal resistance. And the development and research for CFRC has been in progress in the field of aerospace and defense industry. CFRC have several advantages and special properties such as excellent anti ablation, outstanding strength retention at very high temperature, high heat capacity and thermal transport, high specific stiffness and strength, and high thermal shock resistance. They have been used as aircraft brake, rocket nozzle, nose cones, jet engine turbine wheels, and high speed craft. Since the technology related to CFRC was prohibited from importing and exporting, we developed our own technology to produce F-16 B32 brake disk made out of CFRC, and then we performed various tests to observe the characteristics of CFRC-based brake disk developed in this study in view of density, strength, friction, specific heat, and heat conductivity.

  • PDF

후륜 디스크 브레이크 Moan 노이즈 해석 (Moan Noise Analysis of Rear Disc Brake)

  • 박진국;김찬중;이봉현;정호일;문창룡;김정락;이충렬
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 춘계학술대회논문집
    • /
    • pp.607-612
    • /
    • 2004
  • Disc brake noise continues to be a major concern throughout the automotive industry despite efforts to reduce its occurrence. Eliminating vibrations during braking is an important task for both vehicle passenger comfort and reducing the overall environmental noise levels. There are several classes of disc brake noise, the major ones being squeal, judder, groan, and moan. In this study, analytical model for moan noise of rear disk brake is investigated. Modeling of the disc brake assembly to take account of the effect of different geometrical and contact parameters is studied through the use of multi-body model. The contact stiffness of the caliper and torque member plays an important role in controlling brake vibration. Therefore, a suitable material pair at the caliper/body contact has been made. An ADAMS model of a rear disc brake system was integrated with a flexible suspension trailng arm from MSC/NASTRAN. A fully non-linear dynamic simulatin of brake system behavior, containing rigid and flexible bodies, was performed for a Prescribed set of operating conditions. Simulation results were validated using data from vehicle experimental testing.

  • PDF

접촉 강성을 고려한 디스크브레이크의 면외진동 해석 (Analysis of Out-of-plane Motion of a Disc Brake System Considering Contact Stiffness)

  • Joe, Yong-Goo;Oh, Jae-Eung;Shin, Ki-Hong
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 춘계학술대회논문집
    • /
    • pp.597-600
    • /
    • 2004
  • A two-degree-of-freedom out-of-plane model with contact stiffness is presented to describe dynamical interaction between the pad and disc of a disc brake system. It is assumed that the out-of-plane motion of the system depends on the friction force acting along the in-plane direction. Dynamic friction coefficient is modelled as a function of both in-plane relative velocity and out-of-plane normal force. When the friction coefficient depends only on the relative velocity, the contact stiffness has the role of negative stiffness. The results of stability analysis show that the stiffness of both pad and disc are equally important. Complex eigenvalue analysis is conducted for the case that the friction coefficient is also dependent on the normal force. The results further verify the importance of the stiffness. It has also been found that increasing the gradient of friction coefficient with respect to the normal force makes the system more unstable. Nonlinear analysis is also performed to demonstrate various responses. Comparing the responses with experimental data has shown that the proposed model may qualitatively well represent a certain type of brake noise.

  • PDF

디스크 브레이크의 구조 및 열 해석 (Structural and Thermal Analysis of Disk Brake)

  • 조재웅;한문식
    • 한국생산제조학회지
    • /
    • 제19권2호
    • /
    • pp.211-215
    • /
    • 2010
  • Continuous contraction and expansion of disk brake can be due to friction and temperature difference at repeated sudden braking. As serious vibration at disk is produced, the braking force will be changed ununiformly and braking system can not be stabilized. Temperature and heat flux at disk brake are investigated by structural and thermal analysis in this study. The maximum equivalent stress and displacement are shown respectively at the ventilated hole and the lower part of disk plate. At thermal analysis of initial state, temperature on disk plate is distributed from $95.9^{\circ}C$ to $100^{\circ}C$. The maximum heat flux of $0.0168W/mm^2$ is shown at the inner friction part between disk plate and pad. At thermal analysis of transient state, temperature on disk plate is distributed from $95^{\circ}C$ to $96.5^{\circ}C$ after 100 second. The maximum heat flux of $0.0024W/mm^2$ is also shown at the inner friction part between disk plate and pad. By comparing with initial state, the temperature on disk plate is more uniformly distributed and heat flux is more decreased by 7 times at transient state.

주행속도와 제동력의 변화에 의한 디스크 브레이크의 스퀄 소음에 미치는 영향 (A Study on the effect of Driving Speed and Breaking Power on Squeal Noise of Disk Break)

  • 김정훈;김경훈;최명진
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.269-270
    • /
    • 2006
  • Brake noise is classified according to frequency territory: judder, groan and squeal. Squeal noise of disk brake is a noise and self excited vibration with frequency of $1{\sim}10Khz$ caused by the friction force between the disk and the pad of the automobile. Passengers in a vehicle feel uncomfortable. It causes unstable characteristic to the brake system when you try to stop the vehicle. Thus this study aims to find in which conditions the vehicles are stable during the braking hour and find ways to decrease a squeal noise and the vibration by measuring various factors including squeal noise and self excited vibration between the pad and disk brake system during the braking hour. From the result the countermeasure for a squeal noise and a vibration decrease is established. Also the analyzed data is found to be useful and can be applied to the actual brake model.

  • PDF

디스크 브레이크 로터 마찰면 가공 형태에 따른 성능 변화 연구 (An Experimental Study for Machined Patterns of Friction Surface on Disc Brake Rotor in Performance Aspect)

  • 정택수;차바우;홍윤화;김청민;홍영훈;조종두
    • 한국자동차공학회논문집
    • /
    • 제24권4호
    • /
    • pp.471-479
    • /
    • 2016
  • Cross-drilling and slotting on the frictional surface of a brake rotor are methods used for improving the performance of the brake system. These shapes have particular advantages, such as the shaving effect of a slotted shape, which maintains a clean pad-to-rotor contact surface, and the venting effect of a drilled shape, which provides passageways for the gas to escape. In order to understand the effect of the machined pattern on the brake performance aspect, an experimental method is adopted along with the dynamometer test. The cross-drilled rotor, slotted rotor, and mixed pattern rotor with cross-drilling and slotting machining are prepared and tested in terms of friction coefficient, temperature, braking torque, and noise.

자전거 브레이크에서의 디스크 로터의 형상별 열응력 해석 (Thermal Stress Analysis of Disk Rotor by Configuration of Bike Brake)

  • 한문식;조재웅
    • 한국자동차공학회논문집
    • /
    • 제23권3호
    • /
    • pp.287-291
    • /
    • 2015
  • This study investigates the result of thermal stress analysis on disk rotor by classes at bike brake. In the analysis result of thermal deformation at the steady state, maximum deformations at models 1, 2 and 3 are 0.14347mm, 0.15823mm and 0.16028mm respectively. The deformation becomes larger as the field goes on from the center to the outside at disk rotor. As there are models 1, 2 and 3 in the order of maximum deformation, model 1 has safest among three models. In the analysis result of thermal stress at steady and transient states, there are models 1, 2 and 3 in the order of maximum stress. Model 1 becomes most excellent on strength and safety among three models. By using the analysis result of disk rotor model at bike disk, it is possible to design the model applied practically at the safe driving of bike.

중형 상용차 통풍형 브레이크 디스크의 제동 시 열 유동 및 변형 해석 (Thermal Fluid Flow and Deformation Analysis of Medium Commercial Vehicle Ventilated Brake Disc in Braking)

  • 강채욱;최규재
    • 한국자동차공학회논문집
    • /
    • 제22권7호
    • /
    • pp.63-69
    • /
    • 2014
  • Domestic automobile companies have adopted drum type brake system for commercial vehicles. However recently those companies have been applying disc-brake system to solve vehicle control-instability and inefficient heat discharge performance of conventional drum brake system for a medium commercial vehicle. Because the kinetic energy of a running commercial vehicle is relatively high, the brake system should discharge lots of heat energy while braking. A ventilated type brake disc has been used to increase heat discharge performance of a brake system. The vent structure of a disc highly affects cooling efficiency. This paper compares thermal characteristics of three types of vent structure in JASO C421 braking condition. It is found that the slant bend type disc has the lowest temperature and thermal stress distributions in the braking condition.

디스크 브레이크 허브 볼트의 억지 끼워 맞춤에서 발생하는 소성변형의 해석 (An analysis of plastic deformation occurring by interference fit of disk brake hub bolt)

  • 이요셉;곽시영;강신일
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2008년도 춘계학술대회 논문집
    • /
    • pp.238-241
    • /
    • 2008
  • A brake system in automobile is one of the important parts that directly affect the safety of passengers. Particularly, disk brake module is applied to almost all kinds of automobile brake system due to its remarkable braking power and braking distance. In the disk brake module of an automobile, the bolt for tire wheel is assembled to the disk brake hub by interference fit (bolt pressing process). The process induces small deformation whose range is within tens of ${\mu}m$ and this deformation may cause the runout badness of the whole disk brake module, and even braking problems such as judder or squeal phenomena which makes the loss of braking efficiency. In this study, bolt pressing fit into hub was simulated by $ANSYS^{TM}$, a commercial structure analysis program. Also, the aspect and the cause of hub displacement were analyzed and the solution for decreasing runout of hub was proposed.

  • PDF