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Analysis of Out-of-plane Motion of a Disc Brake System Considering Contact Stiffness
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ABSTRACT

A two-degree-of-freedom out-of-plane model with contact stiffness is presented to describe dynamical interaction between the
pad and disc of a disc brake system. It is assumed that the out-of-plane motion of the system depends on the friction force acting
along the in-plane direction. Dynamic friction coefficient is modelled as a function of both in-plane relative velocity and out-of-plane
normal force. When the friction coefficient depends only on the relative velocity, the contact stiffness has the role of negative
stiffness. The results of stability analysis show that the stiffness of both pad and disc are equally important. Complex eigenvalue
analysis is conducted for the case that the friction coefficient is also dependent on the normal force. The results further verify the
importance of the stiffness. It has also been found that increasing the gradient of friction coefficient with respect to the normal force
makes the system more unstable. Nonlinear analysis is also performed to demonstrate various responses. Comparing the responses

with experimental data has shown that the proposed model may qualitatively well represent a certain type of brake noise.

1. introduction

Dynamic instability of a disc brake is strongly related
to a non-linear oscillation induced by friction interaction
at the vibrating interface. Its most usual phenomenon
may be the squeal noise and stability analysis for the disc
brake noise has been extensively studied over the last
few decades. Many of these researches are based on the
finite element method [1~3]. However, these methods
generally consider many degrees of freedom and many
coefficients to constitute complicated expressions. As a
result, it may not be easy to find basic roles of the
frictional interface from such methods. Experimental
results show that the disc brake squeal noise may be
resulting from the coupling of out-of-plane motions of
the pad and the disc through frictional instability [4, 5].
Thus, a simple model needs to be developed that
describes the fundamental dynamics of the friction
mechanism of a brake system.

Recently, Shin et al. [6] introduced a two-degree-of-
freedom model which describes a ‘one mode’ interaction
between the pad and disc. However, the model only
accounts for the in-plane dynamics, and so, in this paper,
an out-of-plane model is introduced to find the role of
the contacting surface. It is assumed that the friction
coefficient depends on both in-plane relative velocity and
out-of-plane normal force to describe the relationship
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between the in-plane and out-of plane vibrations.

The friction mechanism has been found to act as
negative stiffness in the out-of-plane vibration if the
friction coefficient is only a furiction of the relative
velocity (it is named as ‘u-system’ in this paper).
Stability analysis is carried out to find the conditions for
the noisy state of the system. The results show that the
damping is not an important parameter in this case,
whereas the stiffness is the essential parameter to
overcome the effect of negative stiffness. When the
friction coefficient is also dependent on the normal force,
a parameter § is introduced which is a partial derivative
of the friction coefficient with respect to normal force.
This is named as ‘f-system’ in this paper. The results of
complex eigenvalue analysis further verify that the
stiffness is the key parameter to control the out-of-plane
vibration, and both stiffness parameters of the pad and
the disc are equally important.

Nonlinear analysis is also conducted to examine the
responses of the system. The results are then compared
with an experimental result. In a certain condition, it has
been found that both the limit cycle and auto-spectrum
from the nonlinear simulation are qualitatively similar to
those constructed from the experimental signal.

2. OQui-of-plane Model and lis Stability
Analysis

Consider the out-of-plane model as shown in Fig. 1.
This represents the pad and disc as single-degree-of-
freedom systems which are connected through a sliding
friction interface and contact stiffness. It is assumed that
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the dynamic friction coefficient is dependent on the in-
plane relative velocity and the out-of-plane normal force,

i.e., (v, N).

Fig. 1 Two-degree-of-freedom out-of-plane model

The normal force acting on the interface varies with
the vertical relative displacement, i.e., N(y) which is
influenced by the contact stiffness k.. Thus, the model
describes how the in-plane motion affects the out-of-
plane motion through the change of friction force. The
equations of motion of the system can be written as

M} +[Clip+[K+ K D{yk=0 ()

where, the normal force can be written as

N =k, -y.) @
Thus, the friction force on the pad side becomes
Fp=-u@, ,N)k, (y,-,) 3

where v, is the relative velocity between the pad and disc
along the in-plane direction. Although the friction force
acts along the horizontal axis, it depends on the vertical
relative displacement. As a result, the effect of friction
force is imbedded in the contact stiffness. The linearized
contact stiffness matrix can be found by [3].
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If the friction coefficient is not greatly affected by the
ou

change of the normal force, the slope W approaches

zero, then the contact stiffness matrix becomes

u3=_Mw{3c-}] )

Considering the friction coefficient is always positive,
H(v,) > 0, the stiffness elements in the symmetric contact
stiffness matrix [K] all act as a negative stiffness. The
system with this contact stiffness is named as ‘-system’
in this paper for convenience. In this case, the equations
of motion can be written as

my, +63, +(k = p,k) y, + 4k, y, =0
(6)
M3y + 6,3y +(ky — O ) vy + 5O,k y, =0

It is important to note that the term u(v,)k. is the most
important parameter that acts as a negative stiffness.
Note also that the friction coefficient depends on the in-
plane relative velocity, but it constitutes the negative
stiffness in the out-of-plane direction. Therefore, it can
be considered that the in-plane vibration affects on the
out-of-plane motion through the change of the friction
coefficient.

If ((v,) is assumed to be a positive constant, linear
stability analysis may be performed. For stability
analysis, the characteristic equation becomes

A+ At k
det[ 1 kll s 12 = 0 (7)
” A+, A+k,
where cnzi’ Cn=—c—2—’ k“ =k|—/‘k;’ kn:kz‘ﬂkc’
m m, m m,

K, = 2k k11=£k£. After some mathematical

m m,
manipulations, a simple stability criterion can be
obtained as

k +k, s kk, ®)
k

where I-c‘,=—k'—~-and172 =—2 Several straight lines
Lk, #k,

(k, versusk, ) can be drawn for various values of r; and

m;. These are shown in Fig. 2(a). The curve —l—+_i =1
I 2

that satisfies the stability criterion is also shown in this
figure where the curve forms the boundary between
stable and unstable regions. It is also shown that the
stability of the system does not depend on mass
parameters. The stability criterion is further verified by
some numerical simulations. The Routh-Hurwitz
criterion is directly applied to equation (7) by using the
same method in [6]. The stability of the system for
various parametric conditions is examined, and the
results are shown in Fig. 2(b). Note that the curve
%-+k“i=l in Fig. 2(a) coincides with the stability
1 2
boundary in Fig. 2(b). It has also been found that the
results are always the same regardless of mass and
damping values. In other words, unlike the case of the in-
plane vibration [6], the stability of the system does not
depend on the damping parameters or the masses, but
only the magnitude of stiffness parameters affects the
stability of the system. It can be seen that the stability
criterion given in equation (8) implies that the stiffness
of both pad and disc must be sufficiently large enough to
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suppress the effect of negative stiffness.

®)

Stable zone

)

Fig. 2 (a) Plots of k, versusk, for various values of m,

and my, (b) Stability area using the Routh-Hurwitz
criterion for any values of mass and damping.

3. Complex Eigenvalue Analysis

If the friction coefficient is a function of both relative
velocity and normal force, the non-symmetric part of the
contact stiffness matrix must be considered. In this case,

the slope g}% has a great influence on the stability of

the system and is an important parameter. Now let such
system to be ‘f-system’ and S =Z—j’$ for convenience.
In this section, considering this non-symmetric stiffness
matrix, a qualitative change in the dynamics such as the
bifurcation is examined as the parameter fJ varies. The
real parts of the eigenvalues of the model (equation (1))
are monitored as a system parameter changes, and the
corresponding bifurcation diagrams are examined.

It is assumed that the out-of-plane normal force and
the in-plane relatively velocity are independent of each
other. And let 1{v,)=1 for convenience. Then, the contact
stiffness matrix becomes

K N kC _kt‘
[K.]= -4 )Lk K ]

» [ﬂkc(y,, =¥a) Pk, -y
NBk(y, -y —Bk(y,-¥,)

where the contact stiffness matrix is composed of a
symmetric negative stiffness part and a non-symmetric
part. In this case, the complex eigenvalues are obtained
numerically to find the main parameters that make the
system unstable. After the complex eigenvalues are
obtained, bifurcation diagrams are investigated.

Since the most important factor is the stiffness, its
effects are examined in detail by varying the parameter g
from 0 to 3, where a constant value of 1{N)=0.6 is used..

The results are shown in Fig. 3 and Fig. 4. When the
stiffness of both pad and disc is increased, the bifurcation
point moves away to the right and hence the system
becomes more stable (Fig. 3). However, if the stiffness is
increased in the system only on one side, for example in

®

the pad, initially the bifurcation point moves to the left
side and then it moves to the right side as the stiffness is
further increased as shown in Fig. 4. Note that moving
the bifurcation point to the left side means a detrimental
effect on the system stability. Despite this negative effect,
Fig. 4 shows the possibility of making the f-system more
stable if the stiffness of either the pad or the disc is
increased greatly. This result is slightly different from the
stability analysis in the previous section where the
stability criterion states that it is impossible to make the
p-system stable by increasing the stiffness only on one
side if the other stiffness is too small. Nevertheless, from
the results shown in Fig. 3 and 4, it can be seen that
stiffness reinforcement must be considered to avoid the
instability in the out-of-plane motion. It also suggests
that it is most effective when the stiffness of both pad
and disc are increased simultaneously.
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Fig. 3 Bifurcation diagrams when both stiffness
parameters (%, k) are increased. (k.=0.5, h=2k;,
m1=m2=l, C]ZCZ=0.1, k1=0.5"“5)
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Fig. 4 Bifurcation diagrams when only £, is increased.
(kc=0.5, k2=2, m1=m2=1, C|=C2=0.1, k|=0.5~5)

4. WNonlinear Simulation and Experiments

Recently, many experimental results have been
published on friction-induced brake noise, especially for
disc brake squeal noise [7, 8]. A significant fact found
from these experiments is that the peak frequencies of
the squeal occur with multiples of the fundamental
frequency, which is a typical nonlinear characteristic. It
is also found that the contacting surfaces are not always
in contact with each other but experience intermittent
separations. This phenomenon may be the main source of
the nonlinearity. In this section, numerical simulations
are performed by taking account of such nonlinearity.
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And the aims of nonlinear analysis are to verify the
results of linear stability analysis and to find whether the
nonlinear simulation results are correlative to the
experimental results. A switching nonlinearity is assumed
to satisfy the intermittent contact, i.e., when two masses
are separated, the system loses its contact stiffness value
until they meet again. Then, the stiffness matrix of the
system in equation (1) may be given as

[K]+{K.]

[x.]= {[K]

where 7 is the relative displacement between the pad
and the disc, and a small region ¢ is introduced to define
the contact region. Numerical simulations are performed
to determine the attractors for various system parameter
values. For this numerical simulation, the f-system is
considered and the system parameters are arbitrarily set
to m=my=1, k=1, k=2, ¢,=¢,=0.01, and $=0.7. The
contact stiffness (k) is then varied to examine the
responses of the system.

Many qualitatively different responses are obtained as
k. varies. When k=4, as in Fig. 5, the frequency
spectrum shows that the fundamental frequency and the
second harmonic component are dominant, and the
corresponding limit cycle motion is also presented.

f <
or n<¢ (10)

for n>¢
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Fig. 6 Experimental results.
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This numerical result is compared with an experiment.
The displacement signal of the pad was measured with a

laser displacement sensor. A typical displacement signal
at squeal state is shown in Fig. 6(a), and the
corresponding frequency spectrum and phase portrait are
shown in Fig. 6(b) and Fig. 6(c). Comparing these
figures with the results in Fig. 11, it can be seen that the
nonlinear simulation results are qualitatively similar to
the experimental results. Thus, it can be considered that
the proposed two-degree-of-freedom out-of-plane model
may qualitatively well represent this type of brake noise.

5. Conclusions

From stability analysis and complex eigenvalue
analysis of the proposed two-degree-of-freedom model,
the following results have been found: First, for the ‘u-
system’, a stability criterion has been derived, and it
suggests that both stiffness parameters of the pad and the
disc must be sufficiently large to suppress the effect of
the negative stiffness. Second, for the ‘S-system’, the
instability can be avoided if the stiffness of either the pad
or the disc is increased greatly while the most effective
method is increasing both stiffness of the pad and the
disc simultaneously. Nonlinear numerical analysis has
been conducted, and the results were found to agree well
with the experimental results. Thus, it can be concluded
that the proposed two-degree-of-freedom model may
well describe the fundamental mechanism of the friction
induced brake noise.
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