• Title/Summary/Keyword: 브레이스

Search Result 48, Processing Time 0.019 seconds

Experimental Study on the Behavior of Brace with Elasto-Plastic Hysteretic damper (탄소성 이력 댐퍼가 부착된 브레이스의 거동에 관한 실험적 연구)

  • Oh, Sang Hoon;Ryu, Hong Sik;Moon, Tae Sup
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.5 s.78
    • /
    • pp.617-625
    • /
    • 2005
  • The brace is often used to resist lateral force such as that exerted by an earthquake. Because of buckling at bifurcation load, the brace shows unstable hysteretic characteristics in the plastic zone. Therefore, in this study, the brace with damper that consists of slit plates were suggested on the purpose of preventing buckling and increasing plastic deformation capacity. The experimental results regarding the brace member were analyzed and the feasibility was also examined.

Experimental Study on the Cyclic Behavior of Modular Building with Strap Braced Load Bearing Steel Stud Walls (스트랩 브레이스를 갖는 내력벽식 모듈러건축 스틸스터드 벽체의 반복하중에 대한 거동 연구)

  • Lee, Doo Yong;Cho, Bong Ho;Kim, Tae Hyeong;Ha, Tae Hyu
    • Journal of Korean Society of Steel Construction
    • /
    • v.28 no.6
    • /
    • pp.415-425
    • /
    • 2016
  • Load-bearing steel stud wall system is widely used for the middle-to-high rise modular buildings worldwide. Seismic performance is a key issue to apply load-bearing steel stud wall system to modular buildings in Korea. This study proposes a new strap braced steel stud wall system with enhanced seismic performance and design equations considering the flexural behaviour of the vertical outer studs. For the verification, two specimens with different strap braces and vertical outer stud were designed and tested. The test results showed that the total strengths were evaluated to be 1.11 to 1.18 times higher than the predicted values. Usually strap braced walls are considered to have low energy dissipation capacities. The proposed system showed enhanced seismic performance with equivalent damping of 9.42% due to the reduced pinching effects.

The Evaluation of Seismic Performance and the Design of Initial Member Sections for Architectural Steel Structures (건축 강구조물의 초기 부재단면 설계 및 내진성능에 관한 연구)

  • Lee, Sang-Ju;Lee, Dong-Woo;Han, Sang-Eul
    • Journal of Korean Association for Spatial Structures
    • /
    • v.6 no.1 s.19
    • /
    • pp.101-109
    • /
    • 2006
  • An initial member sections of steel structures is selected by experience of expert building structural designers. And appropriate member section is designed by repeat calculation through structural analysis. Therefore an initial assumption of member section is necessary for saving the time for structural design and is important to acquire safety of building structures. Also brace damper are generally used to prevent or decrease stuctural damage by its hysteretic behavior in building structures subjected to strong earthquake. Based on plastic design, the initial section of members for architectural steel structures with hysteretic damper braces is presented and seismic effect of structural behavior by the ratio of damper stiffness to structural story stiffness is estimated in this paper.

  • PDF

Evaluation of In-plane Buckling and Ultimate Strength for Braced Arch Ribs (브레이스트 아치 리브의 면내 좌굴 및 극한강도 평가)

  • Park, Yong Myung;Heo, Taek Young;Lee, Pil Goo;Noh, Kyeung Bae
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.6 s.73
    • /
    • pp.759-768
    • /
    • 2004
  • The parametric analysis of vertically braced steel pipe arch ribs was performed to evaluate their in-plane buckling strengths and ultimate load-carrying capacities. The elastic and plastic behavior of braced arch ribs, unlike those of the usual single arch ribs, are affected by such factors as the flexural rigidity of the brace member, brace and pipe ribs spacing, loading situation, and arch curvature. To analyze these effects, several parameters were included, such as the rise-to-span ratio, the second moment of the inertia ratio of the rib to the brace member, the space ratio of the brace, the space ratio of the upper and lower ribs, the initial crookedness, the slenderness ratios of the braced arch ribs, and the loading conditions were considered with live-load-to-dead-load ratios. Based on the results of the parametric analyses, a proper profile of the braced arch rib was proposed. A large-scale structural experiment was also performed to evaluate the ultimate strength of the braced arch rib. The test results were determined to reasonably coincide with the analytical ones.

Interface Module Developement of Structural Design for Brace Connections on based BIM (BIM기반의 브레이스 접합부의 구조설계 인터페이스 모듈 개발)

  • Kim, Tae Hyeong;Shin, Tae Song
    • Journal of Korean Society of Steel Construction
    • /
    • v.25 no.2
    • /
    • pp.197-207
    • /
    • 2013
  • This study is aimed at developing the structural design interface module for the brace connections in order to improve the efficiency of the interoperability between structural design and BIM modeling at the construction design phase of steel structures. For this purpose, structural design module is first established according to the algorithm built by structural design standards of domestic and foreign. Then, it is developed interface module which can export the data of 3D model obtained from the BIM design tools to structural design module and feed structural design results back to 3D BIM model. Finally, the efficiency and practicality of the developed interface module is verified by applying to a sample model.

Optimum Design of Braced Steel Framed Structures Considering Soil Condition Under Earthquake Loads (지반조건을 고려한 브레이스된 강골조 구조물의 내진 최적설계)

  • Park, Moon-Ho;Kim , Ki-Wook;Lee , Seung-Jo;Park , Jung-Hwal
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.4
    • /
    • pp.97-107
    • /
    • 2006
  • This study is structural analysis and continuous, discrete optimum design of braced steel frame structures under earthquake loads considering soil condition. The program which is able to perform simultaneously structural analysis and continuous, discrete optimum design, it is applied steel frame structures using unbraced, Z-braced, and X-braced types and analyze the program about static loads and seismic loads. The purpose of this study is to present proper braced type for seismic effects by comparing and analyzing results of analytic method about various cases using specially Newmark-Hall design spectrum, ATC design spectrum and ATC equivalent static analysis and finding minimum weight and design variables which satisfy the ultimate strength requirements of AISC-ASD specifications, the serviceability requirements and allowable story drift requirements of ATC-3-06 and various constraints.

Influence of Lateral Bracing on Lateral Buckling of Short I-Beams Under Repeated Loadings (반복하중을 받는 짧은 I형 보의 횡좌굴에 대한 횡브레이싱의 영향에 관한 고찰)

  • 이상갑
    • Computational Structural Engineering
    • /
    • v.5 no.1
    • /
    • pp.109-118
    • /
    • 1992
  • Lateral bracing has long been used in design practice to enhance the carrying capacity of the lateral buckling of the beam. Many factors, critically important to lateral bracing performance, do not appear in design formulas. Some of these factors are discussed in this study for the application to short I - beams under repeated loadings through parametric studies with an analytical model : the brace location along the length of the beam, the height of the bracing above the shear center of the beam, and the strength and stiffness of the brace. The parametric studies are carried out using a propped cantilever arrangement, and also using a geometrically (fully) nonlinear beam model for the brace as well as the beam to capture the system buckling. An idealized bracing system is configured to restrain lateral motion, but not rotation. A multiaxial cyclic plasticity model is also implemented to better represent cyclic metal plasticity in conjunction with a consistent return mapping algorithm.

  • PDF

The Study on the Placements of Brace Members Using Optimum Seismic Design of Steel Frames (강골조 구조물의 내진 최적설계에 의한 브레이스 부재 배치에 관한 연구)

  • Kim, Ki-Wook;Park, Moon-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.9 no.1
    • /
    • pp.111-119
    • /
    • 2005
  • This study presents continuous and discrete optimum design algorithm and computer programs for unbraced and braced steel frame structures under earthquake loads. The program, which is avaliable to perform structural analysis and optimum design, continuous and discrete, simultaneously is developed. And the program adopts various braced types, Untraced, Z-braced(V), Z-braced(inverse-V), X-braced(A), X-braced(B), X-braced(C) and K-braced, in steel structures with static loads and seismic effects. The objectives in this optimization are to minimize the total weight of steel, and design variables, based on the ultimate strength requirements of AISC-ASD specifications, the serviceability requirements and allowable story drift requirements of ATC-3-06, and various constraints. The purpose is to present proper braced type for seismic effects by comparing and analysing results of various cases.

Behavior of Seismic Control system with Double Toggle Brace (이중 토글브레이스를 이용한 변위증폭 제진시스템의 이력특성)

  • Choi, Ki-Sun;You, Young-Chan;Kim, Keung-Hwan;Yang, Won-Jik
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.137-138
    • /
    • 2010
  • This paper presents new seismic control system that utilize toggle brace to amplify the displacement of damper. A full scale steel moment frame was constructed for the purpose of testing the energy dissipation system with double toggle brace.

  • PDF

Overcoming the Braess' Paradox in Feasibility Study (경제성 분석의 브레이스 파라독스 극복 방안)

  • Park, Kyung-Chul;Ryu, Si-Kyun;Lee, Sung-Mo;Son, Sang-Hoon
    • Journal of Korean Society of Transportation
    • /
    • v.26 no.1
    • /
    • pp.103-112
    • /
    • 2008
  • In the feasibility analysis, Braess' Paradox results in the negative social benefit in spite of adding transportation facilities. Consequently, it has been difficult to judge on the investment of SOC projects. This research aims to analyze the Braess' Paradox in the feasibility analysis and to seek a remedy for the Paradox. Several experiments were conducted on the simple network under the various conditions. From the experiments, following findings were validated: Braess' Paradox occurred only if travel demands met within certain intermediate range. In terms of traffic assignment method, the SO was more likely to reduce the effect of the Braess' Paradox than the UE. However, the Braess' Paradox in the benefit of operating cost saving occurred in all cases and the paradox in the total benefit continued. In order to solve the problem, new link cost function considered travel time and operating cost simultaneously were suggested. As a result, the negative benefit was significantly decreased in the UE case and total negative benefit was no longer shown in the SO case through the analysis.