• Title/Summary/Keyword: 불확실도 평가

Search Result 1,413, Processing Time 0.027 seconds

An Analysis of the Effect of Climate Change on Byeongseong Stream's Hydrologic and Water Quality Responses Using CGCM's Future Climate Information (CGCM 미래기후정보를 이용한 기후변화가 병성천 유역 수문 및 수질반응에 미치는 영향분석)

  • Choi, Dae-Gyu;Kim, Mun-Sung;Kim, Nam-Won;Kim, Sang-Dan
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.11
    • /
    • pp.921-931
    • /
    • 2009
  • For the assessment of climate change impacts for the Byeongseong stream, CGCM 3.1 T63 is selected as future climate information. The projections come from CGCM used to simulate the GHG emission scenario known as A2. Air temperature and precipitation information from the GCM simulations are converted to regional scale data using the statistical downscaling method known as MSPG. Downscaled climate data from GCM are then used as the input data for the SWAT model to generate regional runoff and water quality estimates in the Byeongseong stream. As a result of simple sensitivity analysis, the increase of CO2 concentration leads to increase water yield through reduction of evapotranspiration and increase of soil water. Hydrologic responses to climate change are in phase with precipitation change. Climate change is expected to reduce water yields in the period of 2021-2030. In the period of 2051-2060, stream flow is expected to be reduced in spring season and increased in summer season. While soil losses are also in phase with water yields, nutrient discharges (i.e., total nitrogen) are not always in phase with precipitation change. However, it should be noted that there are a lot of uncertainties in such multiple-step analysis used to convert climate information from GCM-based future climate projections into hydrologic information.

Coping with Climage Change through Coordinated Operations of the Andong & Imha Dams (안동-임하댐 연계운영을 통한 미래 기후변화 대응)

  • Park, Junehyeong;Kim, Young-Oh
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.12
    • /
    • pp.1141-1155
    • /
    • 2013
  • A number of studies have been performed to analyze climate change impacts of water resources system. In this study, a coordinated dam operation is compared with an existing operation strategy for coping with projected future runoff scenarios. GCMs (Global Circulation Models) and the LARS-WG downscaling method was used to project future climate scenarios. The water balance model called abcd was employed to estimate future runoff scenarios. The existing dam operation comes from the national dam construction guideline, which is called the "level-operation method." The alternative coordinated dam operation are constructed as a linear programming using New York City rule for refill and drawdown seasons. The results of annual total inflow in future is projected to decrease to 72.81% for Andong dam basin and 65.65% for Imha dam basin. As a result of applying future runoff scenarios into the dam operation model, the reliability of coordinated dam operation, 62.22%, is higher than the reliability of single dam operation, 46.55%. Especially, the difference gets larger as the reliability is low because of lack of water. Therefore, the coordinated operation in the Andong & Imha dams are identified as more appropriate alternative than the existing single operation to respond to water-level change caused by climate change.

Fuzzy Control of Smart Base Isolation System using Genetic Algorithm (유전자알고리즘을 이용한 스마트 면진시스템의 퍼지제어)

  • Kim, Hyun-Su;Roschke, P.N.
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.9 no.2 s.42
    • /
    • pp.37-46
    • /
    • 2005
  • To date, many viable smart base isolation systems have been proposed and investigated. In this study, a novel friction pendulum system (FPS) and an MR damper are employed as the isolator and supplemental damping device, respectively, of the smart base isolation system. A fuzzy logic controller (FLC) is used to modulate the MR damper because the FLC has an inherent robustness and ability to handle non linearities and uncertainties. A genetic algorithm (GA) is used for optimization of the FLC. The main purpose of employing a GA is to determine appropriate fuzzy control rules as well to adjust parameters of the membership functions. To this end, a GA with a local improvement mechanism is applied. This method is efficient in improving local portions of chromosomes. Neuro fuzzy models are used to represent dynamic behavior of the MR damper and FPS. Effectiveness of the proposed method for optimal design of the FLC is judged based on computed responses to several historical earthquakes. It has been shown that the proposed method can find optimal fuzzy rules and the GA optimized FLC outperforms not only a passive control strategy but also a human designed FLC and a conventional semi active control algorithm.

Strategies for Multilateral Development Banks Utilization to Enhance International Construction Competitiveness (해외건설 수주경쟁력 강화를 위한 다자간개발은행 활용 방안)

  • Sohn, Tae-Hong;Jung, Chang-Goo;Jang, Hyoun-Seung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.5D
    • /
    • pp.493-498
    • /
    • 2012
  • Korean construction companies have maintained stable market share based on high technology and cost competitiveness although international construction market has been stalled due to increasing global economy uncertainties. However, Korean construction companies have relied heavily on the general types of projects in Middle East and Asia although the portion of different types of projects such as Build-Transfer-Operate (BTO), Build-Transfer-Lease (BTL), and Public-Private-Partnership (PPP) has been increasing in the market. When delivering huge projects requiring contractors deal with activities from project planning to operation, securing finance sources and profitability is deemed critical. Therefore, Korean construction companies need more attentions on the construction market supported by Multilateral Development Banks. However, Korean construction companies have not utilized effective strategies for the market entry and also government supportive policies are not useful enough to help construction companies. This study aims both to analyze the contract structure of Korean construction companies for presenting critical factors that need to be prepared and to suggest various methods that can be applied to support construction companies that have much interest in the Multilateral Development Banks. According to the results of study, it is important that Korean government provide structural information system, make a specialized organization, prevent over-heating among Korean construction companies, and collaborate with Official Development Agency. In addition, it appeared that the fairness and financial stability of project have recognized main advantages of the Multilateral Development Banks.

Research Priorities to Support Mandatory Implementation of a Total Pollutant Load Management System (TPLMS) in the Han River Basin (한강수계 의무적 수질오염총량관리제시행지원을 위한 조사·연구의 우선순위 설정)

  • Lee, Chang-Hee;Lee, Bum-Yeon;Lee, Su-Woong
    • Journal of Environmental Policy
    • /
    • v.8 no.4
    • /
    • pp.25-36
    • /
    • 2009
  • The Total Pollutant Load Management System(TPLMS) in the Han River basin is being changed from a voluntary to a mandatory system. Accordingly, this study suggests directions and priorities for research that can support implementation of TPLMS through an objective approach that deploys gap analysis and analytic hierarchy processes (AHP). Gap analysis indicated that TPLMS in Korea is still focused on compliance with regulations, and that implementation of TPLMS is still in its early stage. Improvements are thus needed in flexibility and effectiveness, including introduction of emissions rights trading, and upgrading to a renewable emissions permit system. The AHP study indicated that R&D will need to proceed in parallel in multiple areas to improve systems and resolve scientific uncertainties. Balanced R&D will be needed in both the institutional and technical groups. Subgroup analysis indicated that developing a reasonable process to establish water quality management targets is of the highest priority in the institutional group. In the technical group, higher priority will need to be given to improving model reliability and developing innovative pollution load reduction technologies.

  • PDF

A Prediction Method of the Gas Pipeline Failure Using In-line Inspection and Corrosion Defect Clustering (In-line Inspection과 부식결함 클러스터링을 이용한 가스배관의 고장예측)

  • Kim, Seong-Jun;Choe, Byung Hak;Kim, Woosik
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.6
    • /
    • pp.651-656
    • /
    • 2014
  • Corrosion has a significant influence upon the reliability assessment and the maintenance planning of gas pipeline. Corrosion defects occurred on the underground pipeline can be obtained by conducting periodic in-line inspection (ILI). However, little study has been done for practical use of ILI data. This paper deals with remaining lifetime prediction of the gas pipeline in the presence of corrosion defects. Because a pipeline parameter includes uncertainty in its operation, a probabilistic approach is adopted in this paper. A pipeline fails when its operating pressure is larger than the pipe failure pressure. In order to estimate the failure probability, this paper uses First Order Reliability Method (FORM) which is popular in the field of structural engineering. A well-known Battelle code is chosen as the computational model for the pipe failure pressure. This paper develops a Matlab GUI for illustrating failure probability predictions Our result indicates that clustering of corrosion defects is helpful for improving a prediction accuracy and preventing an unnecessary maintenance.

Porewater Pressure Predictions on Hillside Slopes for Assessing Landslide Risks (II) Development of Groundwater Flow Model (산사태 위험도 추정을 위한 간극수압 예측에 관한 연구(II) -산사면에서의 지하수위 예측 모델의 개발-)

  • Lee, In-Mo;Park, Gyeong-Ho;Im, Chung-Mo
    • Geotechnical Engineering
    • /
    • v.8 no.2
    • /
    • pp.5-20
    • /
    • 1992
  • The physical-based and lumped-parameter hydrologic groundwater flow model for predicting the rainfall-triggered rise of groundwater levels in hillside slopes is developed in this paper to assess the risk of landslides. The developed model consists of a vertical infiltration model for unsaturated zone linked to a linear storage reservoir model(LSRM) for saturated zone. The groundwater flow model has uncertain constants like soil depttL slope angle, saturated permeability, and potential evapotranspiration and four free model parameters like a, b, c, and K. The free model parameters could be estimated from known input-output records. The BARD algorithm is uses as the parameter estimation technique which is based on a linearization of the proposed model by Gauss -Newton method and Taylor series expansion. The application to examine the capacity of prediction shows that the developed model has a potential of use in forecast systems of predicting landslides and that the optimal estimate of potential 'a' in infiltration model is the most important in the global optimum analysis because small variation of it results in the large change of the objective function, the sum of squares of deviations of the observed and computed groundwater levels. 본 논문에서는 가파른 산사면에서 산사태의 발생을 예측하기 위한 수문학적 인 지하수 흐름 모델을 개발하였다. 이 모델은 물리적인 개념에 기본하였으며, Lumped-parameter를 이용하였다. 개발된 지하수 흐름 모델은 두 모델을 조합하여 구성되어 있으며, 비포화대 흐름을 위해서는 수정된 abcd 모델을, 포화대 흐름에 대해서는 시간 지체 효과를 고려할 수 있는 선형 저수지 모델을 이용하였다. 지하수 흐름 모델은 토층의 두께, 산사면의 경사각, 포화투수계수, 잠재 증발산 량과 같은 불확실한 상수들과 a, b, c, 그리고 K와 같은 자유모델변수들을 가진다. 자유모델변수들은 유입-유출 자료들로부터 평가할 수 있으며, 이를 위해서 본 논문에서는 Gauss-Newton 방법을 이용한 Bard 알고리즘을 사용하였다. 서울 구로구 시흥동 산사태 발생 지역의 산사면에 대하여 개발된 모델을 적용하여 예제 해석을 수행함으로써, 지하수 흐름 모델이 산사태 발생 예측을 위하여 이용할 수 있음을 입증하였다. 또한, 매개변수분석 연구를 통하여, 변수 a값은 작은 변화에 대하여 목적함수값에 큰 변화를 일으키므로 a의 값에 대한 최적값을 구하는 것이 가장 중요한 요소라는 결론을 얻었다.

  • PDF

Analysis on the Water Footprint of Crystalline Silicon PV System (결정질 실리콘 태양광시스템의 물 발자국 산정에 대한 연구)

  • Na, Won-Cheol;Kim, Younghwan;Kim, Kyung Nam;Lee, Kwan-Young
    • Clean Technology
    • /
    • v.20 no.4
    • /
    • pp.449-456
    • /
    • 2014
  • There has been increasing concerns for the problems of water security in countries, caused by the frequent occurrence of localized drought due to the climate change and uncertainty of water balance. The importance of fresh water is emphasized as considerable amount of usable fresh water is utilized for power generation sector producing electricity. PV power system, the source of renewable energy, consumes water for the every steps of life cycle: manufacturing, installation, and operation. However, it uses relatively less water than the traditional energy sources such as thermal power and nuclear power sources. In this study, to find out the use of water for the entire process of PV power system from extracting raw materials to operating the system, the footprint of water in the whole process is measured to be analyzed. Measuring the result, the PV water footprint of value chain was $0.989m^3/MWh$ and the water footprint appeared higher specially in poly-Si and solar cell process. The following two reasons explain it: poly-Si process is energy-intensive process and it consumes lots of cooling water. In solar cell process, deionized water is used considerably for washing a high-efficiency crystalline silicon. It is identified that PV system is the source using less water than traditional ones, which has a critical value in saving water. In discussing the future energy policy, it is vital to introduce the concept of water footprint as a supplementary value of renewable energy.

A Study on Development Strategy of Korean Hidden Champion Firm Utilizing the SWOT/AHP Technique (SWOT/AHP 기법을 이용한 한국형 히든챔피언 기업의 발전전략에 관한 연구)

  • Chung, Youn-Kyaei;Lee, Sang-Suk
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.8 no.3
    • /
    • pp.97-111
    • /
    • 2013
  • This study reviews preceding research for detailed factors to establish development strategies for Korean Hidden Champion firms and classifies strategy factors into internal ones and external ones through specialists' opinions to draw strengths, weaknesses, opportunities and threats of each factor. It also sets hierarchical model to draw up a survey, distributes the survey to groups of specialists and enterprises respectively and then examines consistency ratio. Fifty-four copies of survey whose reliability on responses is secured through examining the consistency ratio are evaluated with their relative importance in factors by using SWOT/AHP technique and their order of priority is determined. Based on their results, development strategies for Korean Hidden Champion firms are established. SWOT/AHP analyses results show that external factors are with the opportunity of industry growth and the threat of intensified competition and market uncertainty and internal factors are with the strength in order of technological competence, construction competence in customer relation and marketing competence. The weakness in the lack of funds, lack of brand awareness in order. This result suggests that external environments of enterprises that more emphasis should be put on the industry growth and aggressive strategies cannot help but be adopted even in a global competition getting fiercer every day are seen more important. Then, it also seems to be thought that the technological competence including R&D and specialization, construction competence in customer relation and marketing competence should internally chosen for strategies to support strategies. The order of priority in development strategies for Korean Hidden Champion firms is drawn as; (i) aggressive S/O strategy which utilizes opportunities by taking advantage of strengths, (ii) W/O strategy which utilizes opportunities by supplementing weaknesses, (iii) diversified S/T strategy which utilizes strengths to make up for threats and (iv) defensive W/T strategy which supplements weaknesses to overcome threats.

  • PDF

Effective Estimation of Porosity and Fluid Saturation using Joint Inversion Result of Seismic and Electromagnetic Data (탄성파탐사와 전자탐사 자료의 복합역산 결과를 이용한 효과적인 공극률 및 유체포화율의 추정)

  • Jeong, Soocheol;Seol, Soon Jee;Byun, Joongmoo
    • Geophysics and Geophysical Exploration
    • /
    • v.18 no.2
    • /
    • pp.54-63
    • /
    • 2015
  • Petrophysical parameters such as porosity and fluid saturation which provide useful information for reservoir characterization could be estimated by rock physics model (RPM) using seismic velocity and resistivity. Therefore, accurate P-wave velocity and resistivity information have to be obtained for successful estimation of the petrophysical parameters. Compared with the individual inversion of electromagnetic (EM) or seismic data, the joint inversion using both EM and seismic data together can reduce the uncertainty and gives the opportunity to use the advantages of each data. Thus, more reliable petrophysical properties could be estimated through the joint inversion. In this paper, for the successful estimation of petrophysical parameters, we proposed an effective method which applies a grid-search method to find the porosity and fluid saturation. The relations of porosity and fluid saturation with P-wave velocity and resistivity were expressed by using RPM and the improved resistivity distribution used to this study was obtained by joint inversion of seismic and EM data. When the proposed method was applied to the synthetic data which were simulated for subsea reservoir exploration, reliable petrophysical parameters were obtained. The results indicate that the proposed method can be applied for detecting a reservoir and calculating the accurate oil and gas reserves.