• Title/Summary/Keyword: 불확도 요인

Search Result 53, Processing Time 0.033 seconds

Error factors and uncertainty measurement for determinations of amino acid in beef bone extract (사골농축액 시료 중에 함유된 아미노산 정량분석에 대한 오차 요인 및 측정불확도 추정)

  • Kim, Young-Jun;Kim, Ji-Young;Jung, Min-Yu;Shin, Young-Jae
    • Analytical Science and Technology
    • /
    • v.26 no.2
    • /
    • pp.125-134
    • /
    • 2013
  • This study was demonstrated to estimate the measurement uncertainty of 23 multiple-component amino acids from beef bone extract by high performance liquid chromatography (HPLC). The sources of measurement uncertainty (i.e. sample weight, final volume, standard weight, purity, standard solution, calibration curve, recovery and repeatability) in associated with the analysis of amino acids were evaluated. The estimation of uncertainty obtained on the GUM (Guide to the expression of uncertainty in measurement) and EURACHEM document with mathematical calculation and statistical analysis. The content of total amino acids from beef bone extract was 36.18 g/100 g and the expanded uncertainty by multiplying coverage factor (k, 2.05~2.36) was 3.81 g/100 g at a 95% confidence level. The major contributors to the measurement uncertainty were identified in the order of recovery and repeatability (25.2%), sample pretreatment (24.5%), calibration-curve (24.0%) and weight of the reference material (10.4%). Therefore, more careful experiments are required in these steps to reduce uncertainties of amino acids analysis with a better personal proficiency improvement.

A Study on the Measurement Method and Uncertainty Factors for Precision Inspection to Feed Unit of High Precision Machine Tool (고정밀 공작기계 이송장치의 정밀도 측정방법 및 불확도 요인에 관한 연구)

  • Kim, Sang-Hwa;Kim, Byung-Ha;Choi, Woo-Gak
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.4
    • /
    • pp.55-61
    • /
    • 2012
  • Very important content in performance evaluation of machine tool is positioning accuracy and repeatability precision measurements of feed mechanism. A study analyses the measurement method and uncertainty factors by ISO-based test method. Reliable results can't be derived without the notion of measurement uncertainty. The reason is that the measured value includes a lot of uncertain factors. Finding the factor that affects the measurement of parameter is important for estimation of measurement precision. In this paper, the evaluation of uncertainty analysis about positioning accuracy and repeatability precision measurements of high precision feed mechanism is presented to evaluate the important factors of uncertainty.

Single Laboratory Validation and Uncertainty Estimation of a HPLC Analysis Method for Deoxynivalenol in Noodles (면류에서 HPLC를 이용한 데옥시니발레놀 분석법의 검증과 불확도 산정)

  • Ee, Ok-Hyun;Chang, Hyun-Joo;Kang, Young-Woon;Kim, Mee-Hye;Chun, Hyang-Sook
    • Journal of Food Hygiene and Safety
    • /
    • v.26 no.2
    • /
    • pp.142-149
    • /
    • 2011
  • An isocratic high performance liquid chromatography (HPLC) method for routine analysis of deoxynivalenol in noodles was validated and estimated the measurement uncertainty. Noodles (dried noodle and ramyeon) were analyzed by HPLC-ultraviolet detection using immunoaffinity column for clean-up. The limits of detection (LOD) and quantification (LOQ) were 7.5 ${\mu}g$/kg and 18.8 ${\mu}g$/kg, respectively. The calibration curve showed a good linearity, with correlation coefficients $r^2$ of 0.9999 in the concentration range from 20 to 500 ${\mu}g$/kg. Recoveries and Repeatabilities expressed as coefficients of variation (CV) spiked with 200 and 500 ${\mu}g$/kg were $82{\pm}2.7%$ and $87{\pm}1.3%$% in dried noodle, and $97{\pm}1.6%$ and $91{\pm}12.0%$ in ramyeon, respectively. The uncertainty sources in measurement process were identified as sample weight, final volume, and sample concentration in extraction volume as well as components such as standard stock solution, working standard solution, 5 standard solutions, calibration curve, matrix, and instrument. Deoxynivalenol concentration and expanded uncertainty in two matrixes spiked with 200 ${\mu}g$/kg and 500 ${\mu}g$/kg were estimated to be $163.8{\pm}52.1$ and $435.2{\pm}91.6\;{\mu}g$/kg for dried noodle, and $194.3{\pm}33.0$ and $453.2{\pm}91.1\;{\mu}g$/kg for ramyeon using a coverage factor of two which gives a level of statistical confidence with approximately 95%. The most influential component among uncertainty sources was the recovery of matrix, followed by calibration curve.

Study on Uncertainty Factors of Head Vibration Measurements (머리 진동 측정치의 불확도 인자들에 관한 연구)

  • Cheung, Wan-Sup;Kim, Young-Tae;Ryu, Je-Dam;Hong, Dong-Pyo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.1 s.94
    • /
    • pp.20-28
    • /
    • 2005
  • This paper addresses uncertainty issues encountered recently in measuring head vibration using the conventional 6-axis or 9-axis bite-bar model. Those conventional bite-bar models are shown to present insufficient information to evaluate a generalized motion of head vibration. In order to overcome such limit, a new theoretical measurement model that consists of four 3-axis linear accelerometers is suggested. It is shown to enable the measurement of three angular acceleration components and six second-order angular velocity-dependent terms. Those nine angular motion-related ones, in addition to the three linear acceleration terms at the origin, are found to make it possible to evaluate the generalized head vibration for a given position. To examine the feasibility of the proposed method, a newly designed 12-axis bite-bar was developed. Detailed experimental results obtained from the developed 12-axis bite-bar are demonstrated in this paper. They illustrate that the popular 6-axis bite-bar model yield about $4.0\%$ relative measurement uncertainty for the pitch component of head vibration, $14\%$ and $10\%$ relative measurement uncertainty for the roll and yaw components of head vibration, respectively. Furthermore, this paper proposes other uncertainty factors to be considered in the future.

Development of Software for GUM based Uncertainty Assessment of Discharge Measured by ADCP (GUM 기반 ADCP 유량 측정불확도 산정을 위한 소프트웨어의 개발)

  • Kim, Jong Min;Kim, Dong Su
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.17-17
    • /
    • 2022
  • 현재 하천에서 유량을 측정하는 가장 일반적인 장비는 ADCP(Acoustic Doppler Current Profiler)이다. ADCP는 일정 수심이 확보되는 곳에서는 보트에 장착하여 효율적으로 정확한 유량을 측정하고 있다고 알려져 있다. ADCP의 활용성이 증가함에 따라 측정결과의 신뢰성을 표현하는 방법에 대한 관심이 증가하고 있으며, 프랑스에서는 해외 전문가들을 초청하여 동일한 현장에서 ADCP의 유량을 측정하고 해당 결과를 비교하여 ADCP의 측정정확도에 대한 분석을 수행하고자 하였고, 국내에서도 이와 동일한 방식으로 홍수통제소가 주관하여 국내 유량조사기관들의ADCP를 이용해 장비에 대한 검정과 측정유량에 대한 정확도를 확인하고자 하였다. 해당 방식은 장비들간의 측정결과를 이용하여 이상치를 나타내는 장비에 대해서는 검토가 가능하나, 측정결과에 어떠한 요인들이 측정정확도에 영향을 발생시키는지에 대한 분석을 하기 에는 한계점이 있다. ISO에서는 일반적으로 이루어지는 측정에 대하여 GUM 표준안을 기반으로 하여 측정불확도를 산정하도록 권장하고 있으며, 유량분야의 위원회인 TC 113에서도 GUM을 이용하도록 권장하고 있다(ISO 25377, 2020). 하지만 ADCP를 이용하여 유량을 계산하는 방식이 매우 복잡하고, 이를 GUM에 적용하여 유량측정의 불확도를 산정하기에는 복잡하고 많은 계산식이 필요하기 때문에 이를 계산할 수 있는 도구가 없다면 일반적인 측정자가 불확도를 산정하기에는 한계가 있다. 본 연구에서는 기존에 수행되었던 연구성과들을 종합하여 ADCP의 유량 측정불확도를 산정하는 과정을 프로그램화하고 쉽게 계산할 수 있도록 AQUA(ADCP discharge(Q) Uncertainty Assessment)라는 소프트웨어를 개발하였다. AQUA는 C#을 기반으로 국내에서 일반적으로 사용하고 있는 Sontek사와 TRDI사의 ADCP의 측정결과를 불러올 수 있도록 개발되었다. 해당 소프트웨어를 이용하여 다양한 사용자들이 사용하고 이를 통해 현재 개발된 소프트웨어의 사용성을 보완한다면, 실무에서도 쉽게 ADCP의 측정불확도를 산정할 수 있을 것으로 기대된다.

  • PDF

Development of an Performance Evaluation Method for Vehicle Detector Speed Measurement Applying Uncertainty in Measurement (측정불확도를 적용한 차량검지기 속도측정 성능평가방법 개발)

  • Lee, Hwan-Pil;Kim, Yong-Man;Kang, Dong-Yun
    • International Journal of Highway Engineering
    • /
    • v.14 no.2
    • /
    • pp.165-174
    • /
    • 2012
  • In this study, a method for evaluating the performance of speed measurements was developed to assess the qualities of a vehicle detector. The evaluation method considers measurement errors that are reflected in a reference speed. For this, the concept of uncertainty in measurement was applied to the development method. Other factors such as precedent study, statistical processing techniques, and speed measurement performance method of traffic enforcement equipment and vehicle detection systems were also reviewed. Through this process, the problems of the existing evaluation methods were derived and developed for the new performance evaluation method. Vehicle detectors that are installed in the field were evaluated using the traditional assessment methods and the developed method. As a result, for traditional assessment methods, it was found that evaluation criteria are acceptable, while developed method's criteria are not acceptable. This means that traditional assessment methods do not sufficiently consider errors in measurement, so it has potential to over-estimate for performance of evaluation equipment. On the other hand, it was represented that the developed method should include variable factor such as errors in measurement and more precise compared to traditional assessment methods.

Arsenic Speciation Aanalysis in Bamboo Salts by Hydride Generation-ICP-AES (수소화물 발생-유도결합 플라즈마 원자 방출 분광법을 이용한 죽염중의 비소 종분리 분석)

  • Yu, Byung-Kyu;Lyu, Mu-Sang;Sun, Yle-Shik;Cho, Ki-Sung
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.41 no.5
    • /
    • pp.674-680
    • /
    • 2012
  • As(III) and As(V) were analyzed in bamboo salts by hydride generation ICP-AES. In order to quantify the total amount of As in bamboo salts, $AsH_3$ was producted by reacting with 6 mol/L hydrochloric acid and $NaBH_4$, which was then analyzed by hydride generation ICP-AES. As(V) was quantified simultaneously after selectively quantifying As(III). As(III) was quantified by determining the total amount of As and then correcting for the amount of As(III). To improve the reliability of the analysis we repeated the experiment several times to check the detection limit, quantification limit, and measurements of our testing methods. According to the result of our quantification analysis of As existing in bamboo salt, the range of total As content was 0.05 mg/kg~0.2 mg/kg and As(V) was over 90% of the total As.

Analysis of Solar Simulator's Uncertainty Factor for Maximum Output Power Test of Photovoltaic Module (PV모듈의 발전성능시험을 위한 Solar Simulator의 측정불확도 요인 분석)

  • Kang, Gi-Hwan;Kim, Kyung-Soo;Park, Chi-Hong;Yu, Gwon-Jong;Ahn, Hyung-Keun;Han, Deuk-Young
    • Journal of the Korean Solar Energy Society
    • /
    • v.27 no.1
    • /
    • pp.39-45
    • /
    • 2007
  • In this paper, we analyzed the elements of measurement uncertainty on electrical performance test which are the most important things in photovoltaic module performance test. Repeating the performance test by 6 men, the measurement uncertainty could be calculated. In this experiment, Solar Simulator (A-Class pulse type) used for domestic certificate test of PV module is Pasan IIIb (Balval, Switzerland). The possible elements of the measurement uncertain that could effect electrical performance test of PV module are reference cell, spectrum correction, error from measurement repetition, test condition, stability and uniformity of artificial solar simulator. To find the measurement uncertainty, 6 men repeated the test by 10 times. And the results were that numerical average value was 124.44W and measurement uncertainty was $124.44W{\pm}0.36W$ with 95% confidence level for 125W PV module(KD-5125).

Quantifying Uncertainty of Vitamin C Determination in Infant Formula by Indophenol Titration Method (인도페놀 적정법에 의한 성장기용조제식 중 비타민 C 함량분석의 측정불확도 산정)

  • Jun, Jang-Young;Kwak, Byung-Man;Ahn, Jang-Hyuk;Kong, Un-Young
    • Korean Journal of Food Science and Technology
    • /
    • v.37 no.3
    • /
    • pp.352-359
    • /
    • 2005
  • Uncertainty involved during determination of vitamin C content in infant formula was quantified by indophenol titration method. Uncertainty sources in measurand, such as purity, weight, final volume of standard, volume of standard solution used for titration, sample weight, final volume of sample, extraction solution used for titration, titration of extraction solution and standard solution by indophenol solution were identified and used as parameters for combined standard uncertainty based on Guide to the expression of uncertainty in measurement (GUM) and Draft EURACHEM/CITAC Guide. Uncertainty parameters of each source in measurand were identified as resolution, reproducibility and stability of chemical balance, standard material purity, repeatability, reproducibility, end point of titration, 1 mL pipet, 5 mL autopipet, and 100 mL mass flask. Each uncertainty component was evaluated by types A and B and included to calculate combined uncertainty. Analytical test result for traceability under laboratorial conditions using Certified Reference Material (CRM) test was certified as $108.4{\pm}1.7mg/100g$, which was within CRM certification range of $114.6{\pm}6.6mg/100g$. Uncertainty test result of vitamin C content of 5 g sampling was $56.7{\pm}2.44mg/100g$. Uncertainty could be reduced by identification of uncertainty sources and components related with vitamin C determination by indophenol titration method and by decreasing uncertainty sources and components.