• Title/Summary/Keyword: 불확도 계산

Search Result 73, Processing Time 0.029 seconds

Algorithm for Calculating Uncertainty in the Computational Simulation for Radiochronometry of Nuclear Materials (핵물질 연대추정을 위한 전산모사 불확도 계산 알고리즘)

  • Jae-Chan Park;Tae-Hoon Jeon;Jin-Young Chung;Jung-Ho Song
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.7
    • /
    • pp.1075-1089
    • /
    • 2023
  • Nuclear forensics is an essential part of nuclear material control and nuclear non-proliferation verification. Radiochronometry for nuclear forensics is used to estimate the timing of refinement and production of nuclear materials based on decay chain characteristics and the Bateman equation. The results of radiochronometry have uncertainties because the decay constant and number of nuclides are statistics derived from analyses or repeated experiments and involve uncertainties. The aim of this study was to develop an uncertainty calculation algorithm by performing computational simulation to overcome the limitations of the existing uncertainty calculation method for radiochronometry based on the Bateman equation. The results of the proposed uncertainty calculation algorithm were comparable to those of the existing method. The algorithm allowed for more than two generations of uncertainty calculations and mitigated the underestimation of the decay constant during the uncertainty calculation.

Estimation of Uncertainty in Critical Flow Function for Natural Gas (천연가스의 임계유동함수 불확도 평가)

  • Ha, Young-Cheol
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.7
    • /
    • pp.625-638
    • /
    • 2014
  • In this study, the uncertainties in the critical flow functions (CFFs) calculated by the AGA8-dc equation of state were estimated. To this end, the formulas for enthalpy, entropy, and speed of sound, which are used in calculating the CFF, were expressed in the form of dimensionless Helmholtz free energy and its derivatives, and the uncertainty in Helmholtz free energy was inferred. To consider the variations in the compressibility-dependent variables induced by the variation (i.e., uncertainty) in compressibility, the form of the AGA8-dc equation was modified to have a deviation equal to the uncertainty under each flow condition. For each independent uncertainty component of the CFF, a model for uncertainty contribution was developed. All these changes were applied to GASSOLVER, which is KOGAS's thermodynamic database. As a result, the uncertainties in the CFF were estimated to be 0.025, 0.055, and 0.112 % at 10, 50, and 100 bar, respectively, and are seen to increase with the increase in pressure. Furthermore, these results could explain the deviations in the CFFs across the different labs in which the CFF international comparison test was conducted under the ISO management in 1999.

A Study on Comparison between the Propagation of Uncertainty by GUM and Monte-Carlo Simulation (측정 불확도 표현 지침서(GUM)와 Monte-Carlo Simulation에 의한 불확도 전파 결과의 비교 연구)

  • Jungkee Shu;Hyungsik Min;Minsu Park;Jin-Chun Woo;Jongsang Kim
    • Journal of the Korean Chemical Society
    • /
    • v.47 no.1
    • /
    • pp.31-37
    • /
    • 2003
  • The expanded uncertainties calculated by the application of GUM -approximation and Monte-Carlo simulation were compared about the model equation of one-point calibration which is widely used for the measurements and chemical analysis. For the comparisons, we assumed a set of artificial data at the various level of concentration and dispersion of t or normal distribution. Mistakes of more then 50 % was revealed at the values calculated by GUM-approximation in comparison with those of Monte-Carlo simulation because of the excess dispersion from t-distribution and non-linearity by division in the equation. In contrary, the mistake of calculation due to non-linearity of the equation was not observed in the level of detection limits with the equation of one-point calibration, because of the relatively large values of uncertainty in response.

A Study on the Treatment of Uncertainty in Linear Regression Method for Chemical Analysis (회귀식 사용에 따른 화학 분석 과정의 불확도 처리 연구)

  • Woo, Jin-Chun;Suh, JungKee;Lim, MyungChul;Park, MinSu
    • Analytical Science and Technology
    • /
    • v.16 no.3
    • /
    • pp.185-190
    • /
    • 2003
  • We applied modified least square method (MLS) and ordinary least square method (OLS) to 1st order equation for the comparison of the uncertainties calculated by these methods. The uncertainty calculated by OLS covered statistically safe interval because it was over-estimated in many cases of measurement and concentration level. But, if the uncertainty of the concentration as a reference value was comparably large (about 5% of the relative standard deviation of random scattering from the regression line and about 7% of relative standard uncertainty of reference values), then uncertainty calculated by OLS was seriously under-estimated at high concentration level. It was revealed that the calculated uncertainty didn't cover statistically safe interval at the stated confidence level. It was found that the method, MLS, described in the previously article would be valid for this calculation of uncertainty.

Quantifying Uncertainty in Cadmium Analytical Measurements (카드뮴 분석에서의 측정불확도 추정)

  • Kang, Kil-Jin;Sun, Nam-Kyu
    • Food Science and Industry
    • /
    • v.40 no.1
    • /
    • pp.27-35
    • /
    • 2007
  • 측정불확도란 시험결과에 대하여 측정량을 합리적으로 추정한 값들의 분산 특성을 나타내는 파라미터(parameter)로써 ILAC(국제시험소인정협력체) 등의 국제기구와의 측정결과에 대한상호인정 및 신뢰성 확보에 필수적인 요소이다. 국제표준(ISO/IEC 17025)에 맞는 시험분석 결과의 도출을 위해서는 먼저 소급성을 유지하고 그에 따른 불확도를 산출하여야 한다. 소급성은 실험의 모든 과정에 불확도를 가지고 끊기지 않는 비교연결을 통한 국제(국가)표준과 연관시키는 시스템으로, sampling에서 측정결과의 도출까지 소급성을 유지하는 것만이 측정결과의 신뢰성(정확 및 정밀)을 유지하는 최상의 시스템이다. Guide to the Expression of Uncertainty in Measurements(GUM)에 의한 불확도 계산 절차는 측정량(measurand)의 함수 표현, 입력량의 표준불확도(standard uncertainty)의 계산(표준편차, 평균의 표준편차), 합성표준불확도(combined uncertainty)의 계산, 확장불확도(expanded uncertainty)의 계산을 통한 통계적 추정을 하는 것이다. 오렌지 쥬스 중 카드뮴을 분석함에 있어서, 실험실에 대해서는 국제표준화(ISO17025) 시스템을 도입하고 분석시약 및 기기에 대하여 소급성을 유지하여, 분석결과의 신뢰성을 확보하기 위한 측정불확도를 산출하였다.

Lateral Cephalometric Measurements of Class I Malocclusion Patients with Uncertainty (불확도를 고려한 Class I 부정교합 환자의 측방두부방사선영상 계측값)

  • Lee, Ji Min;Song, Ji-Soo;Hyun, Hong-Keun;Kim, Young-Jae;Kim, Jung-Wook;Jang, Ki-Taeg;Lee, Sang-Hoon;Kim, Hojae;Cho, Hyo-Min;Shin, Teo Jeon
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.45 no.1
    • /
    • pp.65-74
    • /
    • 2018
  • The aim of this study was to obtain the traceability of the software used to analyze lateral cephalometry and to calculate the uncertainty of the measurements. Furthermore, this study aimed to provide a basis for obtaining standard references for measurement values for orthodontic treatment in children. Cephalometric data were collected from 100 children diagnosed with class I malocclusion between the ages 6 to 13 years who visited the pediatric dentist at Seoul National University Dental Hospital. To ensure traceability, a phantom device was created. Correction values were calculated by measuring the length and angle of the phantom device using the software. Type A uncertainty was calculated by obtaining the standard deviation of cephalometric measurements of 100 persons and the standard error of repeated measurements. Determination of the type B uncertainty was induced by minimum resolution and the position of the head. Using these, the combined standard uncertainty was obtained and the expanded uncertainty was calculated. The results of this study confirm that the currently used software has high accuracy and reliability. Furthermore, the uncertainty of orthodontic measurements in Korean children aged 6 to 13 years was calculated, and distribution range for class I malocclusion with 95% confidence interval was suggested.

Calculation of Uncertainty in Measuring Heat Release Rate in Room Corner Test (룸코너 시험기의 발열량 측정에 대한 불확도 산정)

  • Noh, Kwang-Chul;Kim, Chi-Hoon;Lee, Seung-Chul;Lee, Duck-Hee
    • Fire Science and Engineering
    • /
    • v.26 no.1
    • /
    • pp.16-22
    • /
    • 2012
  • In fire test, accurate heat release rate measurements provide important information to define the fire safety characteristics of products. The calculation of heat release rate depends on the errors of measuring parameters in experimental set-up. In this study, the uncertainty factors of heat release rate in the room corner test facility, which is installed at Korea Railroad Research Institute, were analyzed. Through the fire testings for the KTX interior materials, the uncertainties of heat release rate were calculated. Results showed that uncertainty was high in the initial stage of fire test and gradually decreased with the growth of fire. The oxygen concentration was a major factor contributing to the combined relative standard uncertainty.

Development of Software for GUM based Uncertainty Assessment of Discharge Measured by ADCP (GUM 기반 ADCP 유량 측정불확도 산정을 위한 소프트웨어의 개발)

  • Kim, Jong Min;Kim, Dong Su
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.17-17
    • /
    • 2022
  • 현재 하천에서 유량을 측정하는 가장 일반적인 장비는 ADCP(Acoustic Doppler Current Profiler)이다. ADCP는 일정 수심이 확보되는 곳에서는 보트에 장착하여 효율적으로 정확한 유량을 측정하고 있다고 알려져 있다. ADCP의 활용성이 증가함에 따라 측정결과의 신뢰성을 표현하는 방법에 대한 관심이 증가하고 있으며, 프랑스에서는 해외 전문가들을 초청하여 동일한 현장에서 ADCP의 유량을 측정하고 해당 결과를 비교하여 ADCP의 측정정확도에 대한 분석을 수행하고자 하였고, 국내에서도 이와 동일한 방식으로 홍수통제소가 주관하여 국내 유량조사기관들의ADCP를 이용해 장비에 대한 검정과 측정유량에 대한 정확도를 확인하고자 하였다. 해당 방식은 장비들간의 측정결과를 이용하여 이상치를 나타내는 장비에 대해서는 검토가 가능하나, 측정결과에 어떠한 요인들이 측정정확도에 영향을 발생시키는지에 대한 분석을 하기 에는 한계점이 있다. ISO에서는 일반적으로 이루어지는 측정에 대하여 GUM 표준안을 기반으로 하여 측정불확도를 산정하도록 권장하고 있으며, 유량분야의 위원회인 TC 113에서도 GUM을 이용하도록 권장하고 있다(ISO 25377, 2020). 하지만 ADCP를 이용하여 유량을 계산하는 방식이 매우 복잡하고, 이를 GUM에 적용하여 유량측정의 불확도를 산정하기에는 복잡하고 많은 계산식이 필요하기 때문에 이를 계산할 수 있는 도구가 없다면 일반적인 측정자가 불확도를 산정하기에는 한계가 있다. 본 연구에서는 기존에 수행되었던 연구성과들을 종합하여 ADCP의 유량 측정불확도를 산정하는 과정을 프로그램화하고 쉽게 계산할 수 있도록 AQUA(ADCP discharge(Q) Uncertainty Assessment)라는 소프트웨어를 개발하였다. AQUA는 C#을 기반으로 국내에서 일반적으로 사용하고 있는 Sontek사와 TRDI사의 ADCP의 측정결과를 불러올 수 있도록 개발되었다. 해당 소프트웨어를 이용하여 다양한 사용자들이 사용하고 이를 통해 현재 개발된 소프트웨어의 사용성을 보완한다면, 실무에서도 쉽게 ADCP의 측정불확도를 산정할 수 있을 것으로 기대된다.

  • PDF

A Comparative Study on Quantifying Uncertainty of Vitamin A Determination in Infant Formula by HPLC (HPLC에 의한 조제분유 중 비타민 A 함량 분석의 측정불확도 비교산정)

  • Lee, Hong-Min;Kwak, Byung-Man;Ahn, Jang-Hyuk;Jeon, Tae-Hong
    • Korean Journal of Food Science and Technology
    • /
    • v.40 no.2
    • /
    • pp.152-159
    • /
    • 2008
  • The purpose of this study was to determine the accurate quantification of vitamin A in infant formula by comparing two different standard stock solutions as well as various sample weights using high performance liquid chromatography. The sources of uncertainty in measurement, such as sample weight, final smaple vloume, and the instrumental results, were identified and used as parameters to determine the combined standard uncertainty based on GUM(guide to the expression of uncertainty in measurement) and the Draft EURACHEM/CITAC Guide. The uncertainty components in measuring were identified as standard weight, purity, molecular weight, dilution of the standard solution, calibration curve, recovery, reproducibility, sample weight, and final sample volume. Each uncertainty component was evaluated for type A and type B and included to calculate the combined uncertainty. The analytical results and combined standard uncertainties of vitamin A according to the two different methods of stock solution preparation were 627 ${\pm}$ 33 ${\mu}$g R.E./100 g for 1,000 mg/L of stock solution, and 627 ${\pm}$ 49 ${\mu}$g R.E./100 g for 100 mg/L of stock solution. The analytical results and combined standard uncertainties of vitamin A according to the various sample weighs were 622 ${\pm}$ 48 ${\mu}$g R.E./100 g, 627 ${\pm}$ 33 ${\mu}$g R.E./100 g, and 491 ${\pm}$ 23 ${\mu}$g R.E./100 g for 1 g, 2 g, and 5 g of sampling, respectively. These data indicate that the preparation method of standard stock solution and the smaple amount were main sources of uncertainty in the analysis results for vitamin A. Preparing 1,000 mg/L of stock solution for standard material sampling rather than 100 mg, and sampling not more than 2 g of infant formula, would be effective for reducing differences in the results as well as uncertainty.

Development of Uncertainty Evaluation Model for Vacuum Measurement Standards (진공측정표준의 불확도 평가모델 개발)

  • Hong, S.S.;Lim, J.Y.;Shin, Y.H.
    • Journal of the Korean Vacuum Society
    • /
    • v.20 no.5
    • /
    • pp.313-321
    • /
    • 2011
  • The Korea Research Institute of Standards and Science (KRISS) has three major vacuum systems: an ultrasonic interferometer manometer (UIM), a static volume expansion system (SVES), and an orifice-type dynamic expansion system (ODES). For each system explict measurement model equations with multiple variables are respectively given. According to ISO standards, all these system variables errors were used to calculate the expanded uncertainty (U).