• Title/Summary/Keyword: 불연속면 조사

Search Result 139, Processing Time 0.018 seconds

Stability Assessment on the Final Pit Slope in S Limestone Mine (S 석회석광산에서의 최종 잔벽사면의 안정성 평가)

  • Sun, Woo-Choon;Lee, Yun-Su;Kim, Hyun-Woo;Lee, Byung-Joo
    • Tunnel and Underground Space
    • /
    • v.23 no.2
    • /
    • pp.99-109
    • /
    • 2013
  • The slopes of open-pit mine are typically designed without considering the reinforcement and support method due to the economical efficiency. However, the long-term stability of final pit slope is needed in some case, therefore the appropriate measures that can improve the stability are required. In this study, the field survey and laboratory test were carried out in S limestone mine. The stability assessment of final pit slope was performed through the stereographic projection method, SMR, and numerical analysis. And countermeasures for stabilization were proposed. The results of analysis show that full scale of slope failure is not expected but the failures of bench slope scale are likely to occur. In oder to increase the stability of bench slope, we suggested the remedial methods as follows: excavating the final pit slope by pre-splitting blasting, placing the wide berm in the intermediate bench slope and installing the horizontal drainage hole in the place of local ground water runoff.

Determination of Deformation Modulus of Rock Mass with Measured Tunnel Displacement (측정된 터널변위에 의한 암반 변형계수의 결정)

  • Park, Jae-Woo;Park, Eun-Gyu;Kim, Gyo-Won
    • The Journal of Engineering Geology
    • /
    • v.17 no.4
    • /
    • pp.655-664
    • /
    • 2007
  • The major geotechnical parameters employed in tunnel design are deformation modulus, Poisson's ratio, friction angle, cohesion, etc. Among these parameters, the deformation modulus is the most significant parameter in tunnel deformation. However, determination of the modulus for rock mass by means of tests is very difficult due to factors affecting including discontinuities and sample size, etc. Thus input values used in the numerical analysis are generally determined by empirical method. A numerical analysis on tunnel was conducted with geotechnical parameters determined through the geological field mapping, laboratory tests, and evaluation of boring data, and some discrepancy between the computed result and tunnel displacements measured was found. Thus, further analyses by changing the deformation modulus of rock mass were performed to determine a relationship between the modulus and computed displacement. Data from two tunnel sites were used to verify the applicability of the proposed method and a correlative equation between deformation modulus and tunnel displacement is proposed. The deformation modulus of rock mass was around 30-40% of young's modulus of intact rock in these cases.

Assumption of Failure Surface using Borehole Image Processing System in Failed Rock Slope (Borehole Image Processing System에 의한 붕괴사면의 활동면 추정)

  • Yoo Byung-Ok;Chung Hyung-Sik
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 1999.08a
    • /
    • pp.217-239
    • /
    • 1999
  • Investigation methods of cut slope are conducted generally only geological surface survey to gain engineering geological data of cut slopes. These methods have many problems such as limitation of investigation for a special area. So geophysical investigations such as geotomography, seismic and electrical resistivity methods have been used to search for failure surface in potential failure slopes or failed slopes. But investigation method using the borehole camera is recently a used method and it is thought that this method is more reliable method than other investigation methods because of being able to see by the eyes. Therefore, this paper was conducted investigations of 4 boleholes and BIPS (Borehole Image Processing System) to search for potential sliding surfaces and was applied to obtain information of discontinuity on failed highway slope. As the results of BIPS, we could decide potential sliding surface in the slope and conducted to check slope stability. And decided slope stability measures.

  • PDF

A Study on Correlation Analysis between Inventory Data and Danger Grade of Cut Slopes: Cut Slopes in Kangwondo and Chungcheongdo. (절토사면 현황조사 자료와 위험도간의 상관분석에 관한 연구: 강원도, 충청도 일대 절토사면)

  • Kim, Jin-Hwan;Lee, Jeong-Yeob;Kim, Seung-Hyun;Koo, Ho-Bon
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.12
    • /
    • pp.27-35
    • /
    • 2009
  • KICT (Korea Institute of Construction and Technology) and KISTEC (Korea Infrastructure Safety and Technology Corporation) have been carrying out inventory survey on cut slopes along national roads since 2006. Unlike precision safety check, cut slope inventory survey is a simple check about cut slope's characteristics with the naked eye to collect the data base of slope maintenance. Inventory survey is classified into general status, cut slope characteristics and inspector opinions. The inventory data are analyzed to identify dangerous slopes and decide a safety ranking. In this paper, we performed a correlation analysis using SPSS (ver.15) about the 10,461 cut slope inventory data which are collected in Kangwondo and Chungcheongdo from 2006 to 2008. We calculated the correlation coefficient between cut slope inventory data and the danger score derived from the data. And we evaluated cut slope inventory data which have the more influence on the danger degree of cut slope. According to results of correlation analysis, we found that inventory data influencing cut slope danger degree are stuck and fallen rock, orientation of discontinuity and angle of upper slope. And these data are slightly different by regionally. Later on, if inventory research is finished, we will understand regional characteristics of cut slopes.

Sedimentary facies of the Cambrian Sesong Formation, Taebacksan Basin (태백산분지 캠브리아기 세송층의 퇴적상)

  • Joo, Hyun;Ryu, In-Chang
    • Economic and Environmental Geology
    • /
    • v.45 no.5
    • /
    • pp.565-578
    • /
    • 2012
  • Sedimentary facies of the Middle to Upper Cambrian Sesong Formation, Taebacksan Basin, are analyzed using detailed field mapping and stratigraphic section measuring. As a result, five sedimentary facies are recognized in the formation, which include lime nodule bearing shale facies, anastomosing wackestone-packstone facies, well-laminated siltstone facies, fine to medium sandstone facies and lime pebble conglomerate facies. Together with sedimentary facies analysis, study on vertical facies variation indicates that the Sesong Formation was deposited in an outer to inner shelf during relative sea-level fall. Especially, shallow marine aspects of the upper part of the Sesong Formation including 10-m-thick, fine to medium-grained sandstones appear to be very similar with the shallow marine strata accumulated during the Steptoean Stage (Dunderbergia) in Laurentia. These lithofacies comparisons of coeval strata between two continents suggest that sedimentation in the Sesong Formation reflects the influence of global sea-level fall occurred during the late Middle Cambrian to early Late Cambrian. As well, a stratigraphic discontinuity surface that may have sequence stratigraphic significance is recognized within the shallow marine sandstone beds of the uppermost Sesong Formation. This stratigraphic discontinuity surface may correspond to the Sauk II-III sequence boundary in Laurentia. Therefore, results delineated in this study will use a new stratigraphic paradigm for regional correlation of the Middle to Late Cambrian strata (e.g., the Sesong Formation) in the Taebacksan Basin, and will provide very useful information on intercontinental stratigraphic correlation in the future.

Prediction of Geological Condition Ahead of Tunnel Face Using Hydraulic Drilling Data (유압 천공데이터를 이용한 터널 굴진면 전방 지질상태 예측)

  • Kim, Kwang-Yeom;Kim, Chang-Yong;Kim, Kwang-Sik;Yim, Sung-Bin;Seo, Kyoung-Won
    • The Journal of Engineering Geology
    • /
    • v.19 no.4
    • /
    • pp.483-492
    • /
    • 2009
  • During construction of a tunnel and underground structure, it is very important to acquire accurate information of the rock mass will be excavated. In this study, the drill monitoring method was applied for rapid prediction of geological condition ahead of the tunnel face. Mechanical data(speed, torque and feed pressure) from drilling process using a hydraulic drilling machine were analyzed to assess rock mass characteristics. Rock mass information acquired during excavation from drilling monitoring were compared with results from horizontal boring and tunnel seismic profiling(TSP). As the result, the drilling monitoring method is useful to assess rock mass condition such as geological structures and physical properties ahead of the tunnel face.

Case Study on Application of Geophysical Survey in the Weathered Slope including Core Stones (핵석을 포함하는 풍화사면에서의 지구물리탐사 적용사례 연구)

  • Hong, Won-Pyo;Kim, Jae-Hong;Ro, Byung-Don;Jeong, Gyo-Cheol
    • The Journal of Engineering Geology
    • /
    • v.19 no.1
    • /
    • pp.89-98
    • /
    • 2009
  • Existence of core stone at the inside of the Rock mass is reacting as unstable element. In particular, in case of the cut slope, even when it is not exposed, slope's discontinuity increases or strength level decreases depending on the difference in the weathering grade when it comes to the core stone, and reacts as an important element of the slope movement such as slope's rock fall or collapse. As for the slope that is subject to study, incision was completed after 20 years or so, and parts of the slope reinforcement was completed, but frequent rock fall occurs despite small amount of rainfall, and permanent stability measures are urgent. Refractional seismic survey and geological survey results were compared and analyzed, and reliability was improved by complementing the two survey methods, and stereo-graphic projection using DIPS program was conducted to analyze the characteristics of oore stone in the weathered soil slope.

An Analysis of Cut-slope Based on the Prediction of Joint Distribution inside the Cut-face (개착면 내부에서의 절리분포 예측을 통한 사면 해석)

  • Lee Chang-Sup;Chung Jin-Bo;Cho Taechin
    • Tunnel and Underground Space
    • /
    • v.14 no.6 s.53
    • /
    • pp.391-398
    • /
    • 2004
  • An algebraic algorithm for predicting the joint trace distribution on the cut-face of rock slope based on the orientations and the locations of joints investigated in the borehole has been developed. Joint trace prediction is manipulated by utilizing the three dimensional plane equations of both joint planes and projection face, and the extent of trace within the projection area is calculated by considering the persistence of each joint plane. Joint trace prediction method is efficiently applied for analyzing the stability and the adequacy of support design of Gimhae Naesam cut-slope, which is structurally unstable due to slumping. Structural characteristics of rock mass is investigated by performing DOM drilling and the potential rock mass sliding inside slope face is analyzed by examining the orientations of joint planes which can induce the slope failure. Also, the efficiency of anchor support design is evaluated by considering the joint trace distribution on the anchor installation area and its sliding potential.

Study on Performance-based Evaluation Method for Rock Slopes : Deduction of Weight and Validation - Based on the AHP method and Correlation Analysis - (암반비탈면의 성능기반 평가기법 연구 : 가중치 도출 및 검증 - AHP 기법과 상관분석을 중심으로 -)

  • Lee, Jong Gun;Heo, In Young;Kang, Chang Kyu;Ryu, Ho Sang;Chang, Buhm Soo
    • Tunnel and Underground Space
    • /
    • v.26 no.5
    • /
    • pp.431-440
    • /
    • 2016
  • This study aims to suggest the detailed evaluation criteria based on performances for rock slopes. Using the previous research result, final evaluation items are proposed considering characteristics and similarities of each evaluation item. Weight for each evaluation item is deducted using AHP method, verification for suggested evaluation criteria is conducted based on correlation analysis. The research results as follows. All evaluation items have a high statistical correlation with final evaluation result(safety rating). Especially, items of the "rockfall", "ground deformation", "discontinuity characteristic", "instable lithology" were shown the highest in relative correlation coefficient(R), It is judged that items and weight presented in this study well reflect characteristics of rock slopes.

Development and application of 3D migration techniques for tunnel seismic exploration (터널내 탄성파 탐사의 3차원 구조보정기법 개발 및 현장적용)

  • Choi, Sang-Soon;Han, Byeong-Hyeon;Kim, Jae-Kwon;Lee, In-Mo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.6 no.3
    • /
    • pp.247-258
    • /
    • 2004
  • Two 3-dimensional data processing techniques to predict the fractured zone ahead of a tunnel face by the tunnel seismic survey were proposed so that the geometric formation of the fractured zone could be estimated. The first 3-dimensional data processing technique was developed based on the principle of ellipsoid, The input data needed for the 3D migration can be obtained from the 2-dimensional tunnel seismic prediction (TSP) test where the TSP test should be performed in each sidewall of a tunnel. The second 3-dimensional migration technique that was developed based on the concept of wave travel plane was proposed. This technique can be applied when the TSP is operated with sources in one sidewall of a tunnel while the receivers are installed in both sidewalls. New migration technique was applied to an in-situ tunnelling site. The 3-dimensional migration was performed using measured TSP data and its results were compared with the geological investigation results that were monitored during tunnel construction. This comparison revealed that the proposed migration technique could reconstruct the discontinuity planes reasonably well.

  • PDF