• Title/Summary/Keyword: 불순물제거

Search Result 370, Processing Time 0.032 seconds

Development of an Analytical Method for the Determination of Pyriofenone residue in Agricultural Products using HPLC-UVD (HPLC-UVD를 이용한 농산물 중 살균제 pyriofenone 분석법 확립)

  • Park, Hyejin;Kim, HeeJung;Do, Jung-Ah;Kwon, Ji-Eun;Yoon, Ji-Young;Lee, Ji-Young;Chang, Moon-Ik;Rhee, Gyu-Seek
    • The Korean Journal of Pesticide Science
    • /
    • v.18 no.2
    • /
    • pp.79-87
    • /
    • 2014
  • Pyriofenone is an aryl phenyl ketone fungicide that is newly registered in Korea in 2013 to control powdery mildew on food. The objective of this study was to develop reliable and sensitive analytical method for determination of pyriofenone residue in agricultural products for ensuring the food safety. The pyriofenone residues in all samples(Korean melon, pepper, potato, mandarin, soybean, and hulled rice) were extracted with acetonitrile, partitioned with dichloromethane, and then purified with a silica cartridge. The purified samples were analyzed by HPLC-UVD and confirmed with LC-MS. The linear range of pyriofenone was 0.05~5 mg/kg with the correlation coefficient ($r^2$) > 0.999. Average recoveries of pyriofenone ranged from 72.8% to 99.5% at the spiked level of 0.05 and 0.5 mg/kg, while the relative standard deviation was 2.3%~6.4%. In addition, the limit of detection and limit of quantification were 0.01 and 0.05 mg/kg, respectively. The results revealed that the developed and validated analytical method was suitable for pyriofenone determination in agricultural products.

Development of Analysis Method of Caffeine and Content Survey in Commercial Foods by HPLC (HPLC를 이용한 카페인의 분석법 개발 및 시판 식품중 함유량 조사)

  • Kim, Hee-Yun;Lee, Young-Ja;Hong, Ki-Hyoung;Lee, Chul-Won;Kim, Kil-Saeng;Ha, Sang-Chul
    • Korean Journal of Food Science and Technology
    • /
    • v.31 no.6
    • /
    • pp.1471-1476
    • /
    • 1999
  • A simple and practical method for determination of caffeine in foods was developed. The analysis of caffeine was performed by reverse phase high performance liquid chromatography using a ${\mu}-Bondapak\;C_{18}$ column at isocratic condition with methanol-acetic acid-water(20 : 1 : 79) on UV detector at 280 nm. The clean-up and extraction of caffeine in samples were based on a simple pretreatment using a Sep-Pak $C_{18}$ cartridge. Recovery rates obtained with this method for cider, candy, cookie, milk, ice cream and persimmon leaf tea were 99.23%, 99.50%, 99.17%, 99.37%, 98.93% and 99.10% respectively. And the detection limit of caffeine was $0.1\;{\mu}g/mL$. With this method, the range of caffeine contents extracted from coffee, green tea, black tea, Oolong tea(tea bag), soft drinks, ice cream, milk and commercial confectionery were $3.38{\sim}37.50\;mg/g,\;16.30{\sim}26.10\;mg/g,\;10.80{\sim}16.65\;mg/g,\;11.25\;mg/g,\;0.06{\sim}0.11\;mg/g,\;0.04{\sim}0.44\;mg/g,\;0.04{\sim}0.39\;mg/g\;and\;0.10{\sim}1.80\;mg/g$, respectively. But caffeine was not detected in the other tea such as Acanthopanax sessiliflorum tea, Angelica gigas tea, Angelica tea, Arrow root tea, Duchu'ng tea, Dunggulle tea, Ganoerma lucidum tea, Ginger tea powder, Persimmon leaf tea, Ssanghwa tea and Cocoa mix powder.

  • PDF

Analysis of PAHs (polycyclic aromatic hydrocarbons) in Ground Coffee Using GC-tandem Mass Spectrometry and Estimation of Daily Dose (GC-tandem mass spectrometry를 이용한 분쇄원두커피 중 PAHs(polycyclic aromatic hydrocarbons) 분석법 연구 및 인체노출량 평가)

  • Jung, So-Young;Park, Ju-Sung;Son, Yeo-Joon;Choi, Su-Jeong;Lee, Yun-Jeong;Kim, Mi-Sun;Park, So-Hyun;Lee, Sang-Me;Chae, Young-Zoo
    • Korean Journal of Food Science and Technology
    • /
    • v.43 no.5
    • /
    • pp.544-552
    • /
    • 2011
  • The purpose of this study was to develop an analytical method for determining 15 polycyclic aromatic hydrocarbons (PAHs) of EU priority using gas chromatography (GC)-tandem mass spectrometry (MS). The PAHs in ground coffee were analyzed after being extracted using methods such as saponification-liquid-liquid extraction, Soxhlet extraction, and solid-liquid extraction. The solid-liquid extraction method showed the greatest repeatability and most efficient reduction of the matrix effect. GC-tandem MS for the quantification of the 15 PAHs showed better resolution and lower limit of detections (LODs) than GC-MS-selected ion monitoring (SIM) and high performance liquid chromatography with fluorescence detector. LODs of this method for the ground coffee types were 0.002-0.1 ${\mu}g/kg$ and limit of quantifications (LOQs) were 0.006-0.2 ${\mu}g/kg$ The recoveries ranged from 52.6 to 93.3%. Forty-six commercial types of ground coffee were analyzed to determine their PAHs contamination levels. PAHs concentration ranged from ND to 5.988 ${\mu}g/kg$. This study was conducted with toxicity equivalence factors, the U.S. EPA recommendation to identify dietary risks for PAHs in different types of coffee. The estimated average daily dose of PAHs was $5.24{\times}10^{-8}$ mg/kg body weight/day.

Establishment of Analytical Methods for Melamine Related Compounds in Biological Samples (생체시료 중 멜라민 화합물의 미량분석법 개발연구)

  • Han, Kyoung-Moon;Kim, Jin-Ho;Cho, Soo-Yeul;Shim, Sun-Bo;Lee, Jin-Hee;Lee, Ji-Hyun;Hwang, In-Sun;Kim, Sung-Il;Cho, Yang-Ha;Chai, Gap-Yong;Kwon, Soon-Jae;Lee, Jun-Ho
    • Journal of Food Hygiene and Safety
    • /
    • v.26 no.2
    • /
    • pp.125-141
    • /
    • 2011
  • Melamine has raised international concerns for its catastrophic health effects from tainted infant formula. This report concerns the developmental validation of a sensitive HPLC/MS/MS and GC/MS methods about melamine and cyanuric acid in human urine and serum. Analytical detection ranges of LC/MS was from 0.2 to 5.0 ng/mL and 2.0 to 60.0 ng/mL about melamine and cyanuric acid, respectively. The limits of quantification and confirmation are 0.2 ng/mL for both analytes in human urine and serum by LC/MS/MS. The range of recovery was 91.6%, and 107.6% for cyanuric acid and melamine in urine, respectively. The range of precision coefficient variation was from 2.0%, to 11.8% for cyanuric acid and melamine in urine. The range of recovery was from 94.9%, to 119.0% about cyanuric acid and melamine in serum, respectively. The range of precision coefficient variation from was 3.7%, and 13.5% about cyanuric acid and melamine in serum. Analytical detection ranges of GC/MS were 5.0 to 100.0 ng/mL about melamine and cyanuric acid, respectively. The limits of quantification and confirmation are 5.0 ng/mL for both analytes in human urine and serum by GC/MS. The range of recovery was from 83.7%, to 114.5% for cyanuric acid and melamine in urine, respectively. The range of precision coefficient variation was 3.5%, and 10.7% for cyanuric acid and melamine in urine. The range of recovery was 94.4%, and 110.7% for cyanuric acid and melamine in serum, respectively. The range of precision coefficient variation from was 3.9%, and 13.8% for cyanuric acid and melamine in serum. Several changes were taken to optimize performance by this method.

The Effect of BaF2 Particle Size for Zirconium Recycling by Precipitation from Waste Acid and Ba2ZrF8 Vacuum Distillation Property (폐 산세 용액으로부터 공침 반응에 의한 지르코늄 회수 시 BaF2 입도 영향 및 Ba2ZrF8의 진공증류 특성)

  • Choi, Jeong Hun;Nersisyan, Hayk;Han, Seul Ki;Kim, Young Min;Park, Cheol-Ho;Kahng, Jong Won;Na, Ki Hyun;Kim, Jeong hun;Lee, Jong Hyeon
    • Resources Recycling
    • /
    • v.26 no.6
    • /
    • pp.29-37
    • /
    • 2017
  • Nuclear fuel cladding tube is fabricated by pilgering and annealing process. In order to remove impurity and oxygen layer on the surface, pickling process is carried out. When Zirconium(Zr) is dissolved and saturated in acid solution during the pickling process, all the waste acid including Zr is disposed. Therefore, $BaF_2$ is added into the waste acid to extract Zr and $Ba_2ZrF_8$ is subsequently formed. To recycle Zr by electrowinning process, $Ba_2ZrF_8$ is used as electrolyte, but it has high melting point ($1053^{\circ}C$). $ZrF_4$ should be added into $Ba_2ZrF_8$ to decrease the melting point. In this paper, it was investigated that $Ba_2ZrF_8$ was separated to $BaF_2$ and $ZrF_4$ by vacuum distillation. Firstly, $BaF_2$ with different particle size ($1{\mu}m$, $35{\mu}m$, $110{\mu}m$) was added into the waste acid and the respective precipitation property was estimated. $BaF_2$ obtained by vacuum distillation was shattered by ball-milling with different time. The precipitation efficiency was compared with $1{\mu}m$ of ${BaF_2}^{\prime}s$ one, which was not used as precipitation agent.

Gene Expression of Surfactant Protein A, Band C in Platelet-activating Factor(PAF) Treated Rats (Platelet-activating Factor 기도내 투여 후 Surfactant Protein A, B 및 C의 유전자 발현에 관한 연구)

  • Sohn, Jang-Won;Shin, Dong-Ho;Park, Sung-Soo;Lee, Jung-Hee
    • Tuberculosis and Respiratory Diseases
    • /
    • v.45 no.2
    • /
    • pp.369-379
    • /
    • 1998
  • Background: Platelet-activating factor(PAF) might play an important role in the development of acute respiratory distress syndrome. Since PAF induced lung injury is similar to changes of acute respiratory distress gyndrome, and abnormalities in surfactant function have been described in acute respiratory distress syndrome, the authors investigated the effects of PAF on the regulation of surfactant protein A, B and C mRNA accumulation Method: The effects of PAF on gene expression of surfactant protein A, B and C in 24 hours after intratracheal injection of PAF in rats. Surfactant protein A, B and C mRNAs were measured by filter hybridization. Results: The accumulation of SP-A mRNA in PAF treated group was significantly decreased by 37.1 % and 41.6%, respectively compared to the control group and the group treated with Lyso-PAF(p<0.025, p<0.01). The accumulation of SP-B mRNA in PAF treated group was decreased by 18.7% and 32.2 %, respectively compared to the control group and the group treated with Lyso-PAF but statistically not significant. The accumulation of SP-C mRNA in PAF treated group was significantly decreased by 30.7% and 38.5%, respectively compared to the control group and the group treated with Lyso-PAF(p<0.l, p<0.01). Conclusion: These findings represent a marked inhibitory effects of platelet-activating factor on surfactant proteins expression in vivo. This supports, in turn, 'platelet-activating factor might be related to pathogenesis of acute respiratory distress syndrome.

  • PDF

Esterification of Indonesia Tropical Crop Oil by Amberlyst-15 and Property Analysis of Biodiesel (인도네시아 열대작물 오일의 Amberlyst-15 촉매 에스테르화 반응 및 바이오디젤 물성 분석)

  • Lee, Kyoung-Ho;Lim, Riky;Lee, Joon-Pyo;Lee, Jin-Suk;Kim, Deog-Keun
    • Journal of the Korean Applied Science and Technology
    • /
    • v.36 no.1
    • /
    • pp.324-332
    • /
    • 2019
  • Most countries including Korea and Indonesia have strong policy for implementing biofuels like biodiesel. Shortage of the oil feedstock is the main barrier for increasing the supply of biodiesel fuel. In this study, in order to improve the stability of feedstock supply and lower the biodiesel production cost, the feasibility of biodiesel production using two types of Indonesian tropical crop oils, pressed at different harvesting times, were investigated. R. Trisperma oils, a high productive non-edible feedstocks, were investigated to produce biodiesel by esterification and transesterification because of it's high impurity and free fatty acid contents. the kindly provided oils from Indonesia were required to perform the filtering and water removal process to increase the efficiency of the esterificaton and transesterification reactions. The esterification used heterogeneous acid catalyst, Amberlyst-15. Before the reaction, the acid value of two types oil were 41, 17 mg KOH/g respectively. After the pre-esterification reaction, the acid value of oils were 3.7, 1.8 mg KOH/g respectively, the conversions were about 90%. Free fatty acid content was reduced to below 2%. Afterwards, the transesterification was performed using KOH as the base catalyst for transesterification. The prepared biodiesel showed about 93% of FAME content, and the total glycerol content was 0.43%. It did not meet the quality specification(FAME 96.5% and Total glycerol 0.24%) since the tested oils were identified to have a uncommon fatty acid, generally not found in vegetable oils, ${\alpha}$-eleostearic acid with much contents of 10.7~33.4%. So, it is required to perform the further research on reaction optimization and product purification to meet the fuel quality standards. So if the biodiesel production technology using un-utilized non-edible feedstock oils is successfully developed, stable supply of the feedstock for biodiesel production may be possible in the future.

Preparation of Silica Nanoparticles via Recycling of Silicon Sludge from Semiconductor Dicing Process and Electro-responsive Smart Fluid Application (반도체 다이싱 공정에서 발생하는 실리콘 슬러지를 재활용한 실리카 나노입자의 제조 및 전기감응형 유체로의 응용)

  • Yeon-Ryong Chu;Suk Jekal;Jiwon Kim;Ha-Yeong Kim;Chan-Gyo Kim;Minki Sa;Hyung Sub Sim;Chang-Min Yoon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.31 no.3
    • /
    • pp.15-25
    • /
    • 2023
  • In this study, silicon sludge from semiconductor dicing process is recycled to fabricate silica nanoparticles, which are applied as dispersing materials for electro-responsive (ER) smart fluid. In specific, metal impurities are removed from silicon sludge by acid washing to obtain the high-purity silicon powder. And then, silica nanoparticles are synthesized by facile hydrothermal method employing the silicon powder as reactant material. To control the size of silica nanoparticles, the reaction time of hydrothermal method is varied as 8, 15, 20, and 30 hours are applied to control the size of silica nanoparticles. Sizes of silica nanoparticles are increased proportionally to the reaction time owing to the increased numbers of hydrolysis and condensation reactions. As-synthesized silica nanoparticles are prepared as electro-responsive smart fluids by dispersing into silicon oil. Silica nanoparticles synthesized by 30 hours of hydrothermal reaction (SiO2-H30) exhibit the highest shear stress of 21.4 Pa under an applied electric field strength of 3.0kV mm-1. Such enhancement in ER performance of SiO2-H30 among various silica nanoparticles are attribute to the reinforcing effect originated from the mixed particle size, which allowing the formation of rigid chain-like structures. Accordingly, this study successfully propose a recycling method of silicon sludge to synthesize silica nanoparticles and their derived ER fluids, which may suggest new possibility to ESG management emphasizing the eco-friendliness.

Analysis of the Effect of the Etching Process and Ion Injection Process in the Unit Process for the Development of High Voltage Power Semiconductor Devices (고전압 전력반도체 소자 개발을 위한 단위공정에서 식각공정과 이온주입공정의 영향 분석)

  • Gyu Cheol Choi;KyungBeom Kim;Bonghwan Kim;Jong Min Kim;SangMok Chang
    • Clean Technology
    • /
    • v.29 no.4
    • /
    • pp.255-261
    • /
    • 2023
  • Power semiconductors are semiconductors used for power conversion, transformation, distribution, and control. Recently, the global demand for high-voltage power semiconductors is increasing across various industrial fields, and optimization research on high-voltage IGBT components is urgently needed in these industries. For high-voltage IGBT development, setting the resistance value of the wafer and optimizing key unit processes are major variables in the electrical characteristics of the finished chip. Furthermore, the securing process and optimization of the technology to support high breakdown voltage is also important. Etching is a process of transferring the pattern of the mask circuit in the photolithography process to the wafer and removing unnecessary parts at the bottom of the photoresist film. Ion implantation is a process of injecting impurities along with thermal diffusion technology into the wafer substrate during the semiconductor manufacturing process. This process helps achieve a certain conductivity. In this study, dry etching and wet etching were controlled during field ring etching, which is an important process for forming a ring structure that supports the 3.3 kV breakdown voltage of IGBT, in order to analyze four conditions and form a stable body junction depth to secure the breakdown voltage. The field ring ion implantation process was optimized based on the TEG design by dividing it into four conditions. The wet etching 1-step method was advantageous in terms of process and work efficiency, and the ring pattern ion implantation conditions showed a doping concentration of 9.0E13 and an energy of 120 keV. The p-ion implantation conditions were optimized at a doping concentration of 6.5E13 and an energy of 80 keV, and the p+ ion implantation conditions were optimized at a doping concentration of 3.0E15 and an energy of 160 keV.

Optimization and Stabilization of Automated Synthesis Systems for Reduced 68Ga-PSMA-11 Synthesis Time (68Ga-PSMA-11 합성 시간 단축을 위한 자동합성장치의 최적화 및 안정성 연구)

  • Ji hoon KANG;Sang Min SHIN;Young Si PARK;Hea Ji KIM;Hwa Youn JANG
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.56 no.2
    • /
    • pp.147-155
    • /
    • 2024
  • Gallium-68-prostate-specific membrane antigen-11 (68Ga-PSMA-11) is a positron emission tomography radiopharmaceutical that labels a Glu-urea-Lys-based ligand with 68Ga, binding specifically to the PSMA. It is used widely for imaging recurrent prostate cancer and metastases. On the other hand, the preparation and quality control testing of 68Ga-PSMA-11 in medical institutions takes over 60 minutes, limiting the daily capacity of 68Ge/68Ga generators. While the generator provides 1,110 MBq (30 mCi) nominally, its activity decreases over time, and the labeling yield declines irregularly. Consequently, additional preparations are needed, increasing radiation exposure for medical technicians, prolonging patient wait times, and necessitating production schedule adjustments. This study aimed to reduce the 68Ga-PSMA-11 preparation time and optimize the automated synthesis system. By shortening the reaction time between 68Ga and the PSMA-11 precursor and adjusting the number of purification steps, a faster and more cost-effective method was tested while maintaining quality. The final synthesis time was reduced from 30 to 20 minutes, meeting the standards for the HEPES content, residual solvent EtOH content, and radiochemical purity. This optimized procedure minimizes radiation exposure for medical technicians, reduces patient wait times, and maintains consistent production schedules, making it suitable for clinical application.