• Title/Summary/Keyword: 불규칙 파랑

Search Result 398, Processing Time 0.03 seconds

2 Dimensional FEM Elastic Wave Modeling Considering Surface Topography (불규칙 지형을 고려한 2차원 유한요소 탄성파 모델링)

  • Lee, Jong-Ha;Suh, Jung-Hee;Shin, Chang-Soo
    • Geophysics and Geophysical Exploration
    • /
    • v.4 no.2
    • /
    • pp.34-44
    • /
    • 2001
  • Forward modeling by construction of synthetic data is usually practiced in a horizontal surface and a few subsurface structures. However, in-situ surveys often take place in such topographic changes that the corrupted field data always make it difficult to interpret the right signals. To examine the propagation characteristic of elastic waves on the irregular surface, a general mesh generation code for finite element method was modified to consider the topography. By implementing this algorithm, the time domain modeling was practiced in some models with surface topography such as mound, channel, etc. The synthetic data obtained by receivers placed on surface also agreed with the analytic solution. The snapshots showing the total wave-field revealed the propagation characteristic of the elastic waves through complex subsurface structures and helped to identify the signals on the time traces. The transmission of Rayleigh waves along the surface, compressive waves, and sheer waves was observed. Moreover, it turned out that the Rayleigh waves behave like a new source at the edge.

  • PDF

Irregular Waves-Induced Seabed Dynamic Responses around Submerged Breakwater (불규칙파동장하 잠제 주변지반의 동적거동에 관한 수치해석)

  • Lee, Kwang-Ho;Ryu, Heung-Won;Kim, Dong-Wook;Kim, Do-Sam;Kim, Tae-Hyung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.28 no.4
    • /
    • pp.177-190
    • /
    • 2016
  • In case of the seabed around and under gravity structures such as submerged breakwater is exposed to a large wave action long period, the excess pore pressure will be generated significantly due to pore volume change associated with rearrangement soil grains. This effect will lead a seabed liquefaction around and under structures as a result from decrease in the effective stress. Under the seabed liquefaction occurred and developed, the possibility of structure failure will be increased eventually. Lee et al.(2016) studied for regular waves, and this study considered for irregular waves with the same numerical analysis method used for regular waves. Under the condition of the irregular wave field, the time and spatial series of the deformation of submerged breakwater, the pore water pressure (oscillatory and residual components) and pore water pressure ratio in the seabed were estimated and their results were compared with those of the regular wave field to evaluate the liquefaction potential on the seabed quantitatively. Although present results are based on a limited number of numerical simulations, one of the study's most important findings is that a more safe design can be obtainable when analyzing case with a regular wave condition corresponding to a significant wave of irregular wave.

Numerical Simulations of Rip Currents Under Phase-Resolved Directional Random Wave Conditions (위상을 포함한 다방향 불규칙파 조건에서의 이안류 수치모의)

  • Choi, Junwoo
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.27 no.4
    • /
    • pp.238-245
    • /
    • 2015
  • Recently, Choi et al.(2015) showed that a numerical simulation of the SandyDuck experiment under a directional random wave environment agreed well with the experimental data including the wave height distribution of the random waves, the well-developed longshore current and its energetic fluctuation. Based on the Boussinesq modeling, this study investigates the effect of the alongshore variations, which are induced by not only the field topography but also the phase interaction of multidirectional random waves in the surf zone wave field, on the rip currents. As a result, transient rip currents as well as topographical rip currents cause the complicated surfzone circulation and mixing process due to their interactions in a multi-directional random wave condition while the topographical rip currents are dominant in a monochromatic wave condition.

Latching Control Strategy for Improvement Wave Energy Conversion in Irregular Waves (불규칙파중 파랑에너지 변환효율 향상을 위한 래칭 제어전략)

  • Cho, Il Hyoung;Kim, Jeong Rok;Kim, Kyong-Hwan;Hong, Keyyong
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.18 no.4
    • /
    • pp.291-297
    • /
    • 2015
  • The wave spectrum was generated from wave data measured at the Chagwi-do site in Jeju, where a 10MW class floating wave-offshore wind hybrid power generation system will be installed. The latching control technology (Sheng et al.[2015]) was applied in order to improve the extracted power from WEC (Wave Energy Converter), which is heaving in corresponding irregular waves. The peak period as a representative value of irregular waves was used when we determined the latching duration. From the numerical results in the time-domain analysis, the latching control technology can significantly improve the extracted power about 50%.

Dynamic Analysis of Fixed Offshore Structures Subjected to Random Waves (불규칙파에 대한 고정해양구조물의 동적해석)

  • Yun, Chung Bang;Choi, Jung Ho;Ryu, Jeong Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.5 no.2
    • /
    • pp.1-9
    • /
    • 1985
  • Two methods for the dynamic analysis of fixed offshore structures subjected to random waves are studied. They are the frequency domain method using the equivalent linearization of the nonlinear drag force, and the time domain method utilizing the Monte Carlo simulation technique for time series of random wave particle velocities and accelerations. Example analyses are carried out for two structures with different structural characteristics and for various wave conditions. A comparison has been made between the results obtained by two methods.

  • PDF

Current -Drpth Refraction and Diffraction Model for Irregular Waves (수심 및 흐름의 영향에 의한 굴ㆍ회절을 고려한 불규칙파 모형)

  • Jeong, Shin-Taek;Chae, Jang-Won
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.6 no.3
    • /
    • pp.260-265
    • /
    • 1994
  • A new set of elliptic wave equations describing the deformations of irregular waves on a large-scale current field in water of irregular depth is given, and using finite difference scheme an efficient numerical method is also presented. The elliptic equations are solved in a similar way to Initial value problem. This method is extensively used for the calculation of wave spectral transformation. and computation results agree very well with experimental data (Hiraishi, 1991). Finally numerical examples are presented concerning the interactions between waves and currents over a mildly sloping beach and also over a mound.

  • PDF

Motion of a Very Large Floating Structure in Irregular waves (불규칙파 중 초대형 부유식 해양 구조물에 대한 운동)

  • H. Shin;H.Y. Lee;C.G. Lim;H.S. Shin;I.G. Park
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.37 no.4
    • /
    • pp.75-81
    • /
    • 2000
  • Very large floating structures have rather small motion characteristics except their ends, where the motions become much larger due to the elastic motion of the structure. This paper presents the numerical predictions of hydroelastic behaviors of VLFS in irregular waves. To predict motion responses of structure in irregular waves, the source-dipole distribution method and finite element method is used.

  • PDF

Structural Response Analysis of a Tension Leg Platform in Multi-directional Irregular Waves (다방향 불규칙파중의 인장계류식 해양구조물의 구조응답 해석)

  • Lee, Soo-Lyong;Suh, Kyu-Youl;Lee, Chang-Ho
    • Journal of Navigation and Port Research
    • /
    • v.31 no.8
    • /
    • pp.675-681
    • /
    • 2007
  • A numerical procedure is described for estimating the effects of the multi-directional irregular waves on the structural responses of the Tension Leg Platform (TLP). The numerical approach is based on a three dimensional source distribution method for hydrodynamic forces, a three dimensional frame analysis method for structural responses, in which the superstructure of TLP is assumed to be flexible instead of rigid. Hydrodynamic and hydrostatic forces on the submerged surface of a TLP have been accurately calculated by excluding the assumption of the slender body theory. The hydrodynamic interactions among TLP members, such as columns and pontoons, and the structural damping are included in structural analysis. The spectral description used in spectral analysis of directional waves for the linear system of a TLP in the frequency domain is sufficient to completely define the structural responses. This is due to both the wave inputs and responses are stationary Gaussian random process of which the statistical properties in the amplitude domain are well known. The numerical results for the linear motion responses and tension variations in regular waves are compared with the experimental and numerical ones, which are obtained in Yoshida et al.(1983). The results of comparison confirmed the validity of the proposed approach.

Directional Wave Spectrum Equations Considering Asymmetry (비대칭성을 고려한 방향 스펙트럼식)

  • Jung, Jae-Sang;Kang, Kyu-Yung;Lee, Chang-Hoon;Cho, Yong-Sik
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.1950-1953
    • /
    • 2006
  • 본 연구에서는 파랑의 방향에 따른 비대칭성을 고려한 방향 스펙트럼 식을 새로 제안하였다. 심해에서 생성된 다방향 불규칙 파랑이 등수심선에 대해 일정한 각도를 가지고 입사하는 경우, 각 방향의 파랑 성분의 굴절각의 차이에 의해 입사각에 대한 비대칭성이 발생하였다. 파랑의 굴절에 대해서는 Snell의 법칙을 이용하고 천수를 고려하여 해석적으로 계산하였으며, 이 결과와 새로 제안된 방향스펙트럼 식을 이용한 결과를 서로 비교하였다. 그 결과 비대칭성이 강한 천해역에서는 기존의 스펙트럼식에 비해 3배 이상 정확한 값을 재현하였다.

  • PDF

Nonlinear Interaction of Second Order Stokes Waves and Two-Dimensional Submerged Moored Floating Structure (2차원잠수계류부체와 2차Stokes파와의 비선형간섭에 관한 연구)

  • Kim, D. S.
    • Journal of Korean Port Research
    • /
    • v.10 no.1
    • /
    • pp.37-51
    • /
    • 1996
  • 2차의 섭동법과 경계요소법에 기초한 시간영역해석법은 불규칙파의 파동장에 있어서 파-구조물의 비선형간섭을 해석할 수 있는 해석법이지만. 파와 구조물의 운동이 정상상태에 도달하기까지 시간스텝으로 계산을 수행하여야 하므로 계산시간이 매우 길어지고, 각 성분파와 그에 의한 운동요소를 평가하는 것이 어렵다. 반면에 주파수영역해석법은 계산시간이 짧고, 각 성분요소들의 변화특성을 쉽게 판단할 수 있지만, 불규칙파동장으로의 적용이 현실적으로 어렵다는 단점을 가진다. 본 연구에서는 잠제 등에 대해서 전개되어 있는 주파수영역해석법을 임의형상의 부체 구조물에 대해 새롭게 수식의 전개를 수행하고, 압축공기주입 부체구조물에 적용하여 실험 및 이론해석결과로부터 그의 타당성을 확인한다. 이 때 압축공기의 거동은 Boyle법칙을 사용하여 평가한다.

  • PDF