• Title/Summary/Keyword: 분할함수

Search Result 547, Processing Time 0.026 seconds

An Approach to Segmentation of Address Strings of unconstrained handwritten Hangul using Run-Length Code (Rum-Length code를 이용한 제약없이 쓰여진 한글 필기체 주소열 분할)

  • Kim, Gyeonghwan;Yoon, Jason-J
    • Journal of KIISE:Software and Applications
    • /
    • v.28 no.11
    • /
    • pp.813-821
    • /
    • 2001
  • While recognition of isolated units of writing, such as a character or a word, has been extensively studied, emphasis on the segmentation itself has been lacking. In this paper we propose an active segmentation method for handwritten Hangul address strings based on the Run-length code. A slant correction algorithm, which is considered as an important preprocessing step for the segmentation, is presented. Three fundamental candidate estimation functions are introduced to detect the clues on touching points, and the classification of touching types is attempted depending on the structural peculiarity of Hangul. Our experiments show segmentation performance of 88.2% on touching characters with minimal over-segmentation.

  • PDF

A Function Level Static Offloading Scheme for Saving Energy of Mobile Devices in Mobile Cloud Computing (모바일 클라우드 컴퓨팅에서 모바일 기기의 에너지 절약을 위한 함수 수준 정적 오프로딩 기법)

  • Min, Hong;Jung, Jinman;Heo, Junyoung
    • Journal of KIISE
    • /
    • v.42 no.6
    • /
    • pp.707-712
    • /
    • 2015
  • Mobile cloud computing is a technology that uses cloud services to overcome resource constrains of a mobile device, and it applies the computation offloading scheme to transfer a portion of a task which should be executed from a mobile device to the cloud. If the communication cost of the computation offloading is less than the computation cost of a mobile device, the mobile device commits a certain task to the cloud. The previous cost analysis models, which were used for separating functions running on a mobile device and functions transferring to the cloud, only considered the amount of data transfer and response time as the offloading cost. In this paper, we proposed a new task partitioning scheme that considers the frequency of function calls and data synchronization, during the cost estimation of the computation offloading. We also verified the energy efficiency of the proposed scheme by using experimental results.

Suggestion for a splitting technique of the square-root operator of three dimensional acoustic parabolic equation based on two variable rational approximant with a factored denominator (인수분해 된 분모를 갖는 두 변수 유리함수 근사에 기반한 3차원 음향 포물선 방정식 제곱근 연산자의 분할기법 제안)

  • Lee, Keunhwa
    • The Journal of the Acoustical Society of Korea
    • /
    • v.36 no.1
    • /
    • pp.1-11
    • /
    • 2017
  • In this study, novel approximate form of the square-root operator of three dimensional acoustic Parabolic Equation (3D PE) is proposed using a rational approximant for two variables. This form has two advantages in comparison with existing approximation studies of the square-root operator. One is the wide-angle capability. The proposed form has wider angle accuracy to the inclination angle of ${\pm}62^{\circ}$ from the range axis of 3D PE at the bearing angle of $45^{\circ}$, which is approximately three times the angle limit of the existing 3D PE algorithm. Another is that the denominator of our approximate form can be expressed into the product of one-dimensional operators for depth and cross-range. Such a splitting form is very preferable in the numerical analysis in that the 3D PE can be easily transformed into the tridiagonal matrix equation. To confirm the capability of the proposed approximate form, comparative study of other approximation methods is conducted based on the phase error analysis, and the proposed method shows best performance.

Characteristics of Input-Output Spaces of Fuzzy Inference Systems by Means of Membership Functions and Performance Analyses (소속 함수에 의한 퍼지 추론 시스템의 입출력 공간 특성 및 성능 분석)

  • Park, Keon-Jun;Lee, Dong-Yoon
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.4
    • /
    • pp.74-82
    • /
    • 2011
  • To do fuzzy modelling of a nonlinear process needs to analyze the characteristics of input-output of fuzzy inference systems according to the division of entire input spaces and the fuzzy reasoning methods. For this, fuzzy model is expressed by identifying the structure and parameters of the system by means of input variables, fuzzy partition of input spaces, and consequence polynomial functions. In the premise part of the fuzzy rules Min-Max method using the minimum and maximum values of input data set and C-Means clustering algorithm forming input data into the clusters are used for identification of fuzzy model and membership functions are used as a series of triangular, gaussian-like, trapezoid-type membership functions. In the consequence part of the fuzzy rules fuzzy reasoning is conducted by two types of inferences such as simplified and linear inference. The identification of the consequence parameters, namely polynomial coefficients, of each rule are carried out by the standard least square method. And lastly, using gas furnace process which is widely used in nonlinear process we evaluate the performance and the system characteristics.

Distributed Processing System for Aggregate/Analytical Functions on CUBRID Shard Distributed Databases (큐브리드 샤드 분산 데이터베이스에서 집계/분석 함수의 분산 처리 시스템 개발)

  • Won, Jiseop;Kang, Suk;Jo, Sunhwa;Kim, Jinho
    • KIISE Transactions on Computing Practices
    • /
    • v.21 no.8
    • /
    • pp.537-542
    • /
    • 2015
  • Database Shard is a technique that can be queried and stored by dividing one logical table into multiple databases horizontally. In order to analyze the shard data with aggregate or analysis functions, a process is required that integrates partial results on each shard database. In this paper, we introduce the design and implementation of a distributed processing system for aggregation and analysis on the CUBRID Shard distributed database, which is an open source database management system. The implemented system can accelerate the analysis onto multiple shards of partitioned tables; it shows efficient aggregation on shard distributed databases compared to stand-alone databases.

An Emulation System for Efficient Verification of ASIC Design (ASIC 설계의 효과적인 검증을 위한 에뮬레이션 시스템)

  • 유광기;정정화
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.36C no.10
    • /
    • pp.17-28
    • /
    • 1999
  • In this paper, an ASIC emulation system called ACE (ASIC Emulator) is proposed. It can produce the prototype of target ASIC in a short time and verify the function of ASIC circuit immediately The ACE is consist of emulation software in which there are EDIF reader, library translator, technology mapper, circuit partitioner and LDF generator and emulation hardware including emulation board and logic analyzer. Technology mapping is consist of three steps such as circuit partitioning and extraction of logic function, minimization of logic function and grouping of logic function. During those procedures, the number of basic logic blocks and maximum levels are minimized by making the output to be assigned in a same block sharing product-terms and input variables as much as possible. Circuit partitioner obtain chip-level netlists satisfying some constraints on routing structure of emulation board as well as the architecture of FPGA chip. A new partitioning algorithm whose objective function is the minimization of the number of interconnections among FPGA chips and among group of FPGA chips is proposed. The routing structure of emulation board take the advantage of complete graph and partial crossbar structure in order to minimize the interconnection delay between FPGA chips regardless of circuit size. logic analyzer display the waveform of probing signal on PC monitor that is designated by user. In order to evaluate the performance of the proposed emulation system, video Quad-splitter, one of the commercial ASIC, is implemented on the emulation board. Experimental results show that it is operated in the real time of 14.3MHz and functioned perfectly.

  • PDF

Nonlinear Characteristics of Fuzzy Inference Systems by Means of Individual Input Space (개별 입력 공간에 의한 퍼지 추론 시스템의 비선형 특성)

  • Park, Keon-Jun;Lee, Dong-Yoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.11
    • /
    • pp.5164-5171
    • /
    • 2011
  • In fuzzy modeling for nonlinear process, typically using the given data, the fuzzy rules are formed by the input variables and the space division by selecting the input variable and dividing the input space for each input variables. The premise part of the fuzzy rule is identified by selection of the input variables, the number of space division and membership functions and the consequent part of the fuzzy rule is identified by polynomial functions in the form of simplified and linear inference. In general, formation of fuzzy rules for nonlinear processes using the given data have the problem that the number of fuzzy rules exponentially increases. To solve this problem complex nonlinear process can be modeled by separately forming the fuzzy rules by means of fuzzy division of each input space. Therefore, this paper utilizes individual input space to generate fuzzy rules. The premise parameters of the fuzzy rules are identified by Min-Max method using the minimum and maximum values of input data set and membership functions are used as a series of triangular, gaussian-like, trapezoid-type membership functions. And lastly, using the data which is widely used in nonlinear process we evaluate the performance and the system characteristics.

Segmentation Method of Overlapped nuclei in FISH Image (FISH 세포영상에서의 군집세포 분할 기법)

  • Jeong, Mi-Ra;Ko, Byoung-Chul;Nam, Jae-Yeal
    • The KIPS Transactions:PartB
    • /
    • v.16B no.2
    • /
    • pp.131-140
    • /
    • 2009
  • This paper presents a new algorithm to the segmentation of the FISH images. First, for segmentation of the cell nuclei from background, a threshold is estimated by using the gaussian mixture model and maximizing the likelihood function of gray value of cell images. After nuclei segmentation, overlapped nuclei and isolated nuclei need to be classified for exact nuclei analysis. For nuclei classification, this paper extracted the morphological features of the nuclei such as compactness, smoothness and moments from training data. Three probability density functions are generated from these features and they are applied to the proposed Bayesian networks as evidences. After nuclei classification, segmenting of overlapped nuclei into isolated nuclei is necessary. This paper first performs intensity gradient transform and watershed algorithm to segment overlapped nuclei. Then proposed stepwise merging strategy is applied to merge several fragments in major nucleus. The experimental results using FISH images show that our system can indeed improve segmentation performance compared to previous researches, since we performed nuclei classification before separating overlapped nuclei.

Estimation of the Medium Transmission Using Graph-based Image Segmentation and Visibility Restoration (그래프 기반 영역 분할 방법을 이용한 매체 전달량 계산과 가시성 복원)

  • Kim, Sang-Kyoon;Park, Jong-Hyun;Park, Soon-Young
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.4
    • /
    • pp.163-170
    • /
    • 2013
  • In general, images of outdoor scenes often contain degradation due to dust, water drop, haze, fog, smoke and so on, as a result they cause the contrast reduction and color fading. Haze removal is not easier problem due to the inherent ambiguity between the haze and the underlying scene. So, we propose a novel method to solve single scene dehazing problem using the region segmentation based on graph algorithm that has used a gradient value as a cost function. We segment the scene into different regions according to depth-related information and then estimate the global atmospheric light. The medium transmission can be directly estimated by the threshold function of graph-based segmentation algorithm. After estimating the medium transmission, we can restore the haze-free scene. We evaluated the degree of the visibility restoration between the proposed method and the existing methods by calculating the gradient of the edge between the restored scene and the original scene. Results on a variety of outdoor haze scene demonstrated the powerful haze removal and enhanced image quality of the proposed method.

Improved Snakes Algorithm for Tongue Image Segmentation in Oriental Tongue Diagnosis (한방 설진에서 혀 영상 분할을 위한 개선된 스네이크 알고리즘)

  • Jang, Myeong-Soo;Lee, Woo-Beom
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.16 no.4
    • /
    • pp.125-131
    • /
    • 2016
  • Tongue image segmentation is critical for automation of the tongue diagnosis system. However, most image segmentation methods for tongue diagnosis systems in oriental medicine have been proposed as user-based manual types or semi-automatic types. This study proposed a new method for tongue image segmentation, which is the most important image processing stage for complete automation of the tongue diagnosis system in oriental medicine. The proposed method improved the conventional snake algorithm, by making improvement on the internal energy function so that, as the points move outward reversely, the snake energy function is minimized, by using the image characteristics of tongue images. To calculate external energy, hierarchical spatial filtering is applied to ensure resistance against noise. Also, The proposed method was tested by using sample images and actual images, and showed more robustness against the background noise than the conventional snake algorithm. And, when one selected point was moved by the improved snake algorithm, energy values at the starting, middle, and end points were analyzed, and showed robustness that does not fall in the local minima.