• Title/Summary/Keyword: 분진

Search Result 1,091, Processing Time 0.029 seconds

Explosion Characteristics and Flame Velocity of Suspended Plastic Powders (플라스틱 부유 분진의 폭발특성과 화염전파속도)

  • Han, Ou Sup;Lee, Keun Won
    • Korean Chemical Engineering Research
    • /
    • v.54 no.3
    • /
    • pp.367-373
    • /
    • 2016
  • Many of plastic powders handled in industry are combustible and have the hazard of dust fire and explosion accidents. However poor information about the safe handling has been presented in the production works. The aim of this research is investigated experimentally on explosive characteristics of various plastic powders used in industry and to provide additional data with safety informations. The explosibility parameters investigated using standard dust explosibility test equipment of Siwek 20-L explosion chamber. As the results, the dust explosion index ($K_{st}$) of ABS ($209.8{\mu}m$), PE ($81.8{\mu}m$), PBT ($21.3{\mu}m$), MBS ($26.7{\mu}m$) and PMMA ($14.3{\mu}m$) are 62.4, 59.4, 70.3, 303 and 203.6[$bar{\cdot}m/s$], respectively. And flame propagation velocity during plastic dust explosions for prediction of explosive damage was estimated using a flame propagation model based on the time to peak pressure and flame arrival time in dust explosion pressure assuming the constant burning velocity.

The Measurement of Minimum Ignition Energy and Explosion Limit for Pine Tree Dust (소나무 분진의 최소착화에너지와 폭발한계 측정에 관한 연구)

  • Choi Il-Gon;Cho Il-Keon;Mok Yun-Soo;Lee Dong-Hoon;Choi Jae-Wook;Ha Dong-Myeong
    • Journal of the Korean Institute of Gas
    • /
    • v.2 no.2
    • /
    • pp.55-60
    • /
    • 1998
  • In this study, we investigated the dust explosion characteristics by determining minimum ignition energy and explosion limit for this experiment, we used pine-tree dust which was used widely for the filler of thermosetting resin. The experiment was accomplished according to the variation of discharge gap, dust concentration, particle size and humidity. The result of this experiment are as follows; (1) The relation between the discharge gap and ignition energy was that ignition energy decreased according as the discharge gap became small, but increased when the discharge gap was below 4mm and suddenly became infinite when the discharge gap was below. So, we knew that this infinite value was limit discharge gap. (2) When the dust concentration increase and the particle size became microscopic it was easy to explore and in the same particle size, if the humidity increase the minimum ingnition energy decreased.

  • PDF

A Risk Assessment in According to Spot Measures and Analysis in Dust Generation Area (분진발생지역의 현장실측과 분석을 통한 위험성 평가)

  • Shong, Kil-Mok;Kim, Young-Seok;Kim, Chong-Min
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.9
    • /
    • pp.103-110
    • /
    • 2008
  • In terms of electrical safety, environmental impact assessment and revision of domestic regulation are needed for the electric facilities. In this paper, risk of electric facilities is assessed by the spot measures and analysis in dust generation area. Adhesion dust in a surface of insulated materials cause electrical accidents. In a mechanism of these accidents, when the dust lie on electric facilities, a leakage current is flowed and the surface of insulated material is carbonized. Hereafter, electrical fire is generated due to Joule's heat. As the results, dusts are found in protection devices or panel board and sampled dusts vary in sampled amounts and conductivity severally. For the most part, sodium is detected but zinc and calcium are detected in case of reclaimed rubber factory by the ICP-AES(Inductively Coupled Plasma-Atomic Emission Spectroscopy). In a sewerage, the ingredients such as sodium, magnesium, iron, calcium, aluminium, etc are detected uniformly. So that, results of the spot measures and analysis of dusts are become the important data for the assessment of electrical hazard in dust generation area.

A Study on the Property of Combustion tower Dust in EAF Process (전기로 연소탑 하단에 포집되는 분진의 특성 연구)

  • Kim, Young-Hwan;Yoo, Jung-Min
    • Resources Recycling
    • /
    • v.26 no.5
    • /
    • pp.48-53
    • /
    • 2017
  • During steelmaking on EAF, 1 ~ 2% of dust is generated. EAF Dust contains 20 ~ 30% of Zn and Fe. Dust contained in Off-gas is passed through combustion tower and cooling tower, and then captured in bag filter. About 15 wt.% of dust is dropped at the bottom of Combustion tower by its specific gravity, which was also carried out to recycle company with more higher charge than Bag filter dust. This study is focused on the combustion tower dust, and seperation as a function of operation period and particle size. As a result, Zn and Fe content of dust is more affected by size factor than operation period.

A Study on Mineral Carbonation of Chlorine Bypass Dust with and without Water Washing (수세 유무에 따른 염소 바이패스 분진의 광물 탄산화 연구)

  • Hye-Jin Yu;Woo Sung Yum
    • Resources Recycling
    • /
    • v.32 no.6
    • /
    • pp.18-24
    • /
    • 2023
  • This study undertook initial investigations into the carbonation of chlorine bypass dust, aiming to apply it as a raw material for cement and as an admixture for concrete. Various experimental methods, including XRD(X-ray diffraction), XRF(X-ray fluorescence), and particle size distribution analyses, were employed to verify the physical and chemical properties of chlorine bypass dust, with and without water washing. The mineral carbonation extent of chlorine bypass dust was examined by considering the dust type, stirring temperature, and experiment duration. Notably, a higher degree of mineral carbonation was observed in water-washed bypass dust than its non-water-washed counterpart, indicating an elevated calcium content in the former. Furthermore, an augmented stirring temperature positively impacted the initial stages of mineral carbonation. However, divergent outcomes were observed over time, contingent upon the specific characteristics of dust types under consideration.

A Case Study on the Dust Explosion of Sugar (설탕 분진 폭발 사례에 관한 연구)

  • Cho, Young-Jin;Nam, Jung-Woo;Bae, Seung-Chul;Sa, Seung-Hun;Choi, Chang-Ho;Seo, Young-Il;Song, Jae-Young;Kim, Jin-Pyo
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2012.04a
    • /
    • pp.404-407
    • /
    • 2012
  • 국내의 설탕 제조공장에서 발생한 설탕 분진 폭발사고와 관련하여 조사내용을 토대로 분진폭발 원인을 분석하였다. 폭발이 발생한 장소는 제조된 설탕을 저장하는 사이로(Silo) 등이 포함되는 공간으로 설탕 분진이 항상 존재하는 곳이며, 작은 불씨만 있어도 쉽게 폭발로 이어질 수 있는 위험한 장소임을 공장 관계자들은 숙지하고 있었다. 폭발직전 용접작업이 있었음을 현장조사에서 확인할 수 있었으며, 설탕 분진이 폭발할 수 있다는 위험성에 대하여 전혀 알지 못하는 임시 직원이 작업과정에서 용접을 한 것으로 확인되었다. 분진 폭발의 위험성이 존재하는 환경에서 불꽃을 취급한 작업 자체도 부적절했지만, 안전관리 측면에서 설탕 분진의 위험성에 대하여 무지한 임시 직원이 혼자 작업할 수 있도록 용인한 점과 사전에 안전교육이 전혀 없었다는 점이 더욱 문제라고 할 수 있다.

  • PDF

Status of Pyrometallurgical Treatment Technology of EAF Dust (제강분진의 건식 처리기술 현황)

  • Sohn, Ho-Sang
    • Resources Recycling
    • /
    • v.27 no.2
    • /
    • pp.68-76
    • /
    • 2018
  • EAF (Electric arc furnace) dust is an important secondary resource such as zinc, lead, and iron. Recycling of EAF dust is benefit to solving disposal and environmental problems caused by the heavy metals entrained in the dust. In this study, pyrometallurgical treatment technology of EAF dust reviewed for the improvement of conventional process and development of new process. The existing technologies categorized into four groups: those by rotary kiln process, rotary hearth furnace (RHF) process, shaft type process, and reduction smelting process. The product of these processes are ZnO and Fe or slag as a waste. Their mechanisms for the production of ZnO from EAF dust were carbothermic reduction and oxidation of zinc gas with air.

Characteristics of domestic coals and efficient control of coal dust (국내 석탄광 분진의 특성과 효율적 제어)

  • Kim, Soo Hong;Kwon, Jun Wook;Kim, Sun Myung;Kim, Yun kwang;Jang, Yun Ho
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.4
    • /
    • pp.589-609
    • /
    • 2017
  • This study carried out the density and energy dispersive X-ray spectroscopy and particle size analysis which are the physical characteristics of coal dust by collecting samples of coal dust in the five domestic mines to control the coal dust through ventilation in the workplace for coal mining in the country. This will contribute to a more comfortable working environment by understanding the physical characteristics of the coal dust which is derived from any hard coal produced domestically. In particular, the result of PSA analysis showed that the size of coal dust sample for this study ranged from $0.007{\sim}88.614{\mu}m$ were the particles less than $3.5{\mu}m$, the size range responsible for pneumoconiosis. To observe the flow of coal dust collected on the wind speed, the fallout of coal dust produced by the wind tunnel for the wind was measured and the particle size analysis of coal dust fallout was carried out. In addition, airborne dust is measured according to the mine velocity by using a multi-stage Anderson sampler in the mine where fine dust is generated in a large amount and the wind speed is found out to control the coal dust below $3.5{\mu}m$. In addition, natural ventilation pressure of A mine was calculated to prevent over design of the main fan.

정전기 방전조건이 낙하분진의 최소 착화에너지에 미치는 영향(II) -전극의 형상과 전극간격-

  • ;;Manabu Takeuchi;Mizuki Yamaguma;Tsutomu Kodama
    • Proceedings of the Korean Institute of Industrial Safety Conference
    • /
    • 2000.06a
    • /
    • pp.64-69
    • /
    • 2000
  • 오늘날 분진은 석유 화학공업, 제약공업, 플라스틱공업 등 기능이 점점 다양화되고 있으며 산업분야에서도 광범위하게 이용되고 있다. 그로 인해 분진 폭발사고는 대형 공정에서뿐만 아니라 저장, 취급, 운송하는 일반화된 공정에서도 정전기 방전등의 점화원에 의해 화재 및 폭발의 위험성이 증가하고 있다. 이러한 재해를 미연에 방지하기 위해 안전관리의 일환으로 분진의 최소착화에너지(Minimum Ignition Energy; MIE)를 측정하여 관리하고 있다. (중략)

  • PDF

기상변화에 따른 미세분진 측정용 기구간의 농도 비교 연구

  • 양원호;윤충식;이부용;허용;김대원;김진국;박종성
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2003.11b
    • /
    • pp.150-153
    • /
    • 2003
  • 본 연구결과에서 측정기간 동안 측정기별로 상당한 농도차이를 나타낸 기간을 살펴보면 풍속이 높았던 것으로 분석되었다. 따라서, 기상요소 중 풍속은 미세분진의 측정시 유입속도에 영향을 일으켜 부유분진 측정농도에 오차를 야기 시킬 수 있는 것으로 생각할 수 있다. 결론적으로 건강유해 영향을 일으킬 수 있는 미세분진의 측정에 다양한 측정기가 사용될 수 있지만, 측정장소의 환경적 요소인 실내 및 실외환경뿐만 아니라 풍속같은 기상요소를 고려하여 측정기를 선택하여야 한다.

  • PDF