• Title/Summary/Keyword: 분지

Search Result 2,106, Processing Time 0.025 seconds

The Geomorphic Characteristics of Okcheon Basin & Jincheon Basin (옥천분지와 진천분지의 지형특성)

  • Youn, In-Hyeok
    • Journal of the Korean association of regional geographers
    • /
    • v.7 no.4
    • /
    • pp.93-104
    • /
    • 2001
  • The purpose of this study is to analyze the geomorphic characteristics of two erosional basins with same geological conditions. The study areas, the Okcheon basin ($36^{\circ}\;14'{\sim}36^{\circ}\;20'\;N,\;127^{\circ}\;32'\;30"{\sim}127^{\circ}\;37'\;37"\;E$) and Jincheon basin($36^{\circ}\;48'{\sim}37^{\circ}\;03'\;N,\;127^{\circ}\;22'{\sim}127^{\circ}\;36'\;E$), are located on middle part of the Geum river. The geological maps, a summit level map, and a drainage network map are created and analyzed the geomorphic characteristics. The main results are as follows: 1) The Okcheon basin and Jincheon basin are typical erosional basin, in which basin floor are composed of granite. 2) The formation of Okcheon basin and Jincheon basin resulted from differencial erosion after upwarping. 3) Okcheon basin and Jincheon basin are available for specialized agriculture area and a site of new settlement with satisfactory to accessibility.

  • PDF

Seismic Structures of the Eastern Bransfield Basin, Antarctic Peninsula (남극반도 동부 브랜스필드분지의 탄성파구조)

  • Jin, YoungKeun;Nam, SangHeon;Kim, YeaDong;Lee, JooHan
    • Journal of the Korean Geophysical Society
    • /
    • v.7 no.2
    • /
    • pp.99-112
    • /
    • 2004
  • The Basin, a marginal basin located between the Antarctic Peninsula and the South Shetland Islands, is consist of three small basins, the Central, Eastern, Western Basins. Seismic data obtained on December 1995 show well-defined spreading ridges, basement highs, faults, morphology of the basin, distribution of sediments, crustal and sedimentary deformation, diapirs, and contourites. The main spreading axis of the Central Bransfield Basin connecting Deception and Bridgeman Islands continues up to the central part of the Eastern Basin, whereas deep basin covered by thick sediments without any spreading structures develops in the northeastern part. This indicates that back-arc spreading along the axis of the Bransfield Basin has been taken place in the southwestern part of the Eastern Basin, not in the northeastern part. Many NW-SE trending faults perpendicular to the axis of the basin would be related with strike-slip movement of the Shackleton Fracture. Zone. Extensinal strutures like deep basin without any spreading structures in the northeastern part, normal faults and diapirs on both continental slopes of the Eastern Basin would be formed by extension as a consequence of the sinistral movement between Antarctic and the Scotia plates.

  • PDF

Branching Pattern and Effective Leaf Area of Spreading Herbs, The Crabgrass and The Korean Lawn (포복형 초본(바랭이와 잔디)의 분지형과 유효 엽면적)

  • 장남기;홍정림
    • Asian Journal of Turfgrass Science
    • /
    • v.7 no.2_3
    • /
    • pp.95-101
    • /
    • 1993
  • 1992년 6월부터 1993년 9월 동안에 서울에서 이루어진 바랭이와 잔디의 분지형(branching pattern)과 유효엽면적(effective leaf area)에 대한 정량적 연구 결과는 다음과 같다. 1. 분지 끝 지점의 2차원적인 위치는 수학적 방식을 이용한 이론적 모델에 의해 분지사이의 각과 분지 길이들이 상대적인 비를 이용하여 계산할 수 있다. 2. 분지각과 분지길이의 상대적인 비는 바랭이나 잔디의 개체와 군락의 전체적인 구조를 효과적으로 분석하는데 있어 매우 적절하게 사용될 수 있다. 3. 시간에 따라 변화되는 분지형을 명확히 분석하기 위해 positive feedback theory를 성장 분석 모델로 적용하였다. 4. 분지의 마디 배열은 봄에서 여름에 이르는 생장 기간동안에 변화됨을 나타내었다. 주지(mother branch)와 복지(daughter branch)사이의 각은 적정치에 수렴하는 양상을 보였으며 그 평균값은 바랭이가 50도, 잔디가 59도임을 알 수 있었다. 5. 야외에서 관찰된 실험적 측정치아 모식적 구성을 통해서 최대 물질 생산과 연관된 햇빛 흡수와 수용의 극대화를 위한 분지형과 최대 유효엽면적의 상관 관계를 분석하였다. 6. 따라서 수학적 모식을 이용한 분지형 분석은 실험적 측정치와 잘 일치하며, 이런 수관형의 형성은 유전적 요소와 환경적 요소에 의해 영향을 받을 뿐만 아니라 식물의 적응적 중요성을 지니는 유효잎면적, 관수용 및 광합성과 물질생산의 극대화를 분석하는데도 유효하게 쓰일 수 있다.

  • PDF

The distribution of sulfate and methane concentration and their vertical trend in the Ulleung Basin (동해 울릉분지의 황산염과 메탄의 농도 분포 및 심도에 따른 변화 양상)

  • Kim Ji-Hoon;Park Myong-Ho;Ryu Byong-Jae;Lee Young-Joo;Han Hyun-Chul;Cheong Tae-Jin;Oh Jae-Ho;Chang Ho-Wan
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.622-625
    • /
    • 2005
  • 본 연구의 목적은 동해 울릉분지 천부퇴적층의 공극수와 메탄의 특징 및 상호작용을 규명하는데 있다. 울릉분지에서 채취한 코어에서 공극수를 추출하여 분석한 결과, 공극수의 황산염 농도가 퇴적물의 심도가 증가할수록 감소하며, 감소하는 경향은 크게 세 가지 (직선성, concave down, upward kink)로 나뉨을 알 수 있었다. 이는 모든 코어에서 황산염 환원작용이 일어나고 있음을 지시한다 황산염 농도의 수직적 구배를 이용하여 SMI (sulfate-methane interface) 심도를 계산하면, 남부울릉분지가 북부울릉분지보다 낮은 값을 갖는다. 반면에 메탄 농도는 퇴적물의 심도가 증가할수록 전반적으로 증가하며, 공간적으로는 남부 울릉분지가 북부울릉보지보다 높다. 또한 남부울릉분지에서 메탄가스 농도는 SMI 심도 아래에서 급격히 증가한다 메탄가스의 탄소 안정동위원소$(\delta^{13}C)$ 분석 값들은 대부분 $-60\%_{\circ}$이하로서 이는 메탄가스가 열기원 보다는 박테리아기원임을 지시해준다 또한 남부 울릉분지에서 메탄의 탄소 안정동위원소 분석 값들은 메탄농도가 증가할수록 낮은 값을 보여 주는 데 이러한 결과들은 남부 울릉분지에서 무산소 메탄 산화작용이 일어나고 있음을 지시하고, 메탄의 상향 분산 (diffusion)량이 북부 울릉분지보다 많이 일어난다는 것을 의미한다. 공극수내 황산염 이온 농도 구배와 메탄가스 농도를 종합적으로 고려할 때, 울릉분지에서 가스하이드레이트의 부존가능성은 북부 울룽분지보다 남부 울릉분지가 높은 것으로 추정된다.

  • PDF

Geomorphological Environment of Daejeon Basin and Its Influence Urbanization (지형을 중심으로 한 대전 지역의 이해)

  • Kee, Keun-Doh;Lee, Min-Ho
    • Journal of the Korean association of regional geographers
    • /
    • v.8 no.2
    • /
    • pp.229-246
    • /
    • 2002
  • This study is a contribution to the geographical understanding of Daejeon Area, playing the role of principal center of Choongchong Province. This area has been urbanized associated with Daejeon Basin, an important natural unit in the middle part of South Korea. In order to understand Daejeon Area in geographer's view, it is necessary to elucidate geomorphological environment of Daejeon Basin and urban expansion pattern associating with it. Our research is converged into dual objectives: one, description and interpretation of basin's landforms; other, urban expansion relating with geomorphological condition. Daejeon's urban expansion has progressed from the border zone of Daejeon Basin toward into the basin, and then vice versa. Relating to rivers valleys in the basin, the urbanization in the basin has been extended from the river valleys of lower order toward those of higher order. Understanding of the geomorphological mosaique of Daejeon basin is an important base for that of urban mosaique of Daejeon City.

  • PDF

Formation and Evolution of the Miocene Ipcheon Subbasin in Yangbuk-myeon, Gyeongju, SE Korea (한반도 남동부 경주시 양북면 마이오세 입천소분지의 형성과 발달사)

  • Seong, Changhun;Cheon, Youngbeom;Son, Moon;Sohn, Young Kwan;Kim, Jin-Seop
    • The Journal of the Petrological Society of Korea
    • /
    • v.22 no.1
    • /
    • pp.19-34
    • /
    • 2013
  • The Ipcheon Subbasin is an isolated Miocene basin in SE Korea, which has the geometry of an asymmetric graben elongated in the NE-SW direction. It is in contact with basement rocks by faults and separated from adjacent Waup and Eoil basins by the basement. The strata of the basin fills have an overall homoclinal structure, dipping toward NW or WNW. The basin fills consist of Early Miocene sediments rich in dacitic volcanic and volcaniclastic deposits and Middle Miocene non-volcanic and nonmarine conglomerates intercalated with sand layers, which are distributed in the northeastern and southwestern parts of the basin, respectively. Kinematic analysis of syndepositional conjugate faults in the basin fills indicates WNW-ESE extension of the basin. These features are very similar to those of the adjacent Waup and Eoil basins, indicating that the basin extension was governed by the NE-trending northwestern border faults and that the basin experienced a propagating rifting from NE to SW. Basaltic materials, which occur abundantly in the Eoil Basin, are totally absent in the Ipcheon Subbasin. The observations of the dacitic tuff and tuffaceous mudstone in the subbasin, on slabs and under microscope, suggest that they have lithologies very similar to those of the Yondongri Tuff in the Waup Basin. The Middle Miocene non-volcanic sediments of the Waup and Eoil basins and the Ipcheon Subbasin are distributed consistently in the southwestern part of each basin. It is thus concluded that the extension of the Ipcheon Subbasin began at about 22 Ma together with the Waup Basin and was lulled during the main extension period of the Eoil Basin between 20-18 Ma. At about 17 Ma, the subbasin was re-extended due to the activation of the Yeonil Tectonic Line associated with the propagating rifting toward SW. This event is interpreted to have provided new sedimentation space for the Middle Miocene sediments in the southwestern parts of the Waup and Eoil basins and the Ipcheon Subbasin as well.

An Analog Experimental Model of the Formation Mechanism of Sedimentary Basins (퇴적분지형성 메커니즘에 관한 아날로그 모델 실험)

  • Kim, Woo-Seok;Jung, Jahe
    • The Journal of Engineering Geology
    • /
    • v.28 no.3
    • /
    • pp.397-409
    • /
    • 2018
  • Izumi sedimentary basin (ISB), west of Shikoku, Japan, is widely distributed across the western side of the Sakuragi Bend of the Japan Median Tectonic Line (MTL). It is not obvious how the ISB formed, but this feature is similar to an asymmetric pull-apart basin. The stratigraphic succession and tuff layers show that ages tend to decrease toward the Sakuragi Bend. We investigate whether the ISB is an asymmetric pull-apart basin using analogue model experiments with running sand. A pull-apart basin of length 60 cm and width 20 cm is formed, and secondary normal faults appear on the surrounding surface. A cross-section parallel to the direction of displacement shows that the stratigraphic succession of the pull-apart basin becomes younger toward the releasing bend. A listric normal fault, which has the opposite dip to the master fault, is observed in a cross-section perpendicular to the direction of displacement. These results are consistent with the observed properties of the ISB west of Shikoku, thereby supporting the possibility that the ISB is an asymmetric pull-apart basin.

Geomorphic development of the Jeogchung·Chogye Basin and inner alluvial fan, Hapcheon, South Korea (합천 적중·초계분지와 분지 내 선상지 지형발달)

  • Hwang, Sangill;Yoon, Soon-Ock
    • Journal of the Korean association of regional geographers
    • /
    • v.22 no.1
    • /
    • pp.225-239
    • /
    • 2016
  • The Jeogchung Chogye Basin shows perfect basin formation surrounded with divides, excluding outlet where Sannae River combining various small rivers escapes the basin. High mountains distribute at southwestern, southern and southeastern divides of the basin consisting of hornfels, while hilly mountains are found at northern divide consisting of sedimentary rock. Alluvial fans and flood plains occupy bottom of the basin. While extensive alluvial fans are found at the front of southern divide where rivers with large drainage areas rise, alluvial fans toward eastern and western divides become small due to low elevation of divides. Flood deposits by Hwang River are attributed to development for most of flood plains at northern part of the basin. The basin seems to be developed not by differential erosion or meteorite impact, but by bedrock weathering along lineament or fault lines by ground motion.

  • PDF

Stratigraphy of the Kachi-1 Well, Kunsan Basin, Offshore Western Korea (한국 서해 대륙붕 군산분지 까치-1공의 층서)

  • Ryu, In-Chang;Kim, Tae-Hoon
    • Economic and Environmental Geology
    • /
    • v.40 no.4
    • /
    • pp.473-490
    • /
    • 2007
  • Strata of the Kachi-1 well, Kunsan Basin, offshore western Korea, were analyzed by using integrated stratigraphy approach. As a result, five distinct unconformity-bounded units are recognized in the well: Triassic, Late Jurassic-Early Cretaceous, Early Cretaceous, Late Cretaceous, and Middle Miocene units. Each unit represents a tectono-stratigraphic unit that provides time-sliced information on basin-forming tectonics, sedimentation, and basin-modifying tectonics of the Kunsan Basin. In the late Late Jurassic, development of second- or third-order wrench faults along the Tan-Lu fault system probably initiated a series of small-scale strike-slip extensional basins. Continued sinistral movement of these wrench faults until the Late Cretaceous caused a mega-shear in the basin, forming a large-scale pull-apart basin. However, in the Early Tertiary, the Indian Plate began to collide with the Eurasian Plate, forming a mega-suture zone. This orogenic event, namely the Himalayan Orogeny, continued by late Eocene and was probably responsible for initiation of right-lateral motion of the Tan-Lu fault system. The right-lateral strike-slip movement of the Tan-Lu fault caused the tectonic inversion of the Kunsan Basin. Thus, the late Eocene to Oligocene was the main period of severe tectonic modification of the basin. After the Oligocene, the Kunsan Basin has maintained thermal subsidence up to the present with short periods of marine transgressions extending into the land part of the present basin.

A Non-Uniform Convergence Tolerance Scheme for Enhancing the Branch-and-Bound Method (비균일 수렴허용오차 방법을 이용한 분지한계법 개선에 관한 연구)

  • Jung, Sang-Jin;Chen, Xi;Choi, Gyung-Hyun;Choi, Dong-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.4
    • /
    • pp.361-371
    • /
    • 2012
  • In order to improve the efficiency of the branch-and-bound method for mixed-discrete nonlinear programming, a nonuniform convergence tolerance scheme is proposed for the continuous subproblem optimizations. The suggested scheme assigns the convergence tolerances for each continuous subproblem optimization according to the maximum constraint violation obtained from the first iteration of each subproblem optimization in order to reduce the total number of function evaluations needed to reach the discrete optimal solution. The proposed tolerance scheme is integrated with five branching order options. The comparative performance test results using the ten combinations of the five branching orders and two convergence tolerance schemes show that the suggested non-uniform convergence tolerance scheme is obviously superior to the uniform one. The results also show that the branching order option using the minimum clearance difference method performed best among the five branching order options. Therefore, we recommend using the "minimum clearance difference method" for branching and the "non-uniform convergence tolerance scheme" for solving discrete optimization problems.