• Title/Summary/Keyword: 분자 motor

Search Result 67, Processing Time 0.031 seconds

Rebound excitability mediates motor abnormalities in Parkinson's disease

  • Kim, Jeongjin;Kim, Daesoo
    • BMB Reports
    • /
    • v.51 no.1
    • /
    • pp.3-4
    • /
    • 2018
  • Parkinson's disease (PD) is a debilitating disorder resulting from loss of dopamine neurons. In dopamine deficient state, the basal ganglia increases inhibitory synaptic outputs to the thalamus. This increased inhibition by the basal ganglia output is known to reduce firing rate of thalamic neurons that relay motor signals to the motor cortex. This 'rate model' suggests that the reduced excitability of thalamic neurons is the key for inducing motor abnormalities in PD patients. We reveal that in response to inhibition, thalamic neurons generate rebound firing at the end of inhibition. This rebound firing increases motor cortical activity and induces muscular responses that triggers Parkinsonian motor dysfunction. Genetic and optogenetic intervention of the rebound firing prevent motor dysfunction in a mouse model of PD. Our results suggest that inhibitory synaptic mechanism mediates motor dysfunction by generating rebound excitability in the thalamocortical pathway.

The β Subunit of Heterotrimeric G Protein Interacts Directly with Kinesin Heavy Chains, Kinesin-I (Kinesin-I의 kinesin heavy chains과 직접 결합하는 heterotrimeric G protein의 β subunit의 규명)

  • Seog, Dae-Hyun
    • Journal of Life Science
    • /
    • v.20 no.8
    • /
    • pp.1166-1172
    • /
    • 2010
  • Kinesin-I exists as a tetramer of two heavy chains (KHCs, also called KIF5s), which contain the amino (N)-terminal motor domain and carboxyl (C)-terminal domain, as well as two light chains (KLCs), which bind to the KIF5s (KIF5A, KIF5B and KIF5C) stalk region. To identify the interaction proteins for KIF5A, yeast two-hybrid screening was performed and a specific interaction with the ${\beta}$ subunit of heterotrimeric G proteins ($G{\beta}$) was found. $G{\beta}$ bound to the amino acid residues between 808 and 935 of KIF5A and to other KIF5 members in the yeast two-hybrid assay. The WD40 repeat motif of $G{\beta}$ was essential for interaction with KIF5A. In addition, these proteins showed specific interactions in the glutathione S-transferase (GST) pull-down assay. An antibody to KIF5s specifically co-immunoprecipitated KIF5s associated with heterotrimeric G proteins from mouse brain extracts. These results suggest that kinesin-I motor protein transports heteroterimeric G protein attachment vesicles along microtubules in the cell.

Acid sphingomyelinase inhibition improves motor behavioral deficits and neuronal loss in an amyotrophic lateral sclerosis mouse model

  • Byung Jo, Choi;Kang Ho, Park;Min Hee, Park;Eric Jinsheng, Huang;Seung Hyun, Kim;Jae-sung, Bae;Hee Kyung, Jin
    • BMB Reports
    • /
    • v.55 no.12
    • /
    • pp.621-626
    • /
    • 2022
  • Amyotrophic lateral sclerosis (ALS) is an incurable neurodegenerative disease characterized by the degeneration of motor neurons in the spinal cord. Main symptoms are manifested as weakness, muscle loss, and muscle atrophy. Some studies have reported that alterations in sphingolipid metabolism may be intimately related to neurodegenerative diseases, including ALS. Acid sphingomyelinase (ASM), a sphingolipid-metabolizing enzyme, is considered an important mediator of neurodegenerative diseases. Herein, we show that ASM activity increases in samples from patients with ALS and in a mouse model. Moreover, genetic inhibition of ASM improves motor function impairment and spinal neuronal loss in an ALS mouse model. Therefore, these results suggest the role of ASM as a potentially effective target and ASM inhibition may be a possible therapeutic approach for ALS.

Dopamine as a Strong Candidate for a Neurotransmitter in a Hydrozoan Jellyfish

  • Chung, Jun-Mo
    • BMB Reports
    • /
    • v.28 no.4
    • /
    • pp.323-330
    • /
    • 1995
  • Recent studies have shown that dopamine applied to cultured swimming motor neurons of Polyorchis penicillatus produces an inhibitory action by opening potassium channels through $D_2$-like receptors. In this study, it was demonstrated that dopamine found in the hydromedusa was not from exogenous sources and the content of dopamine depended on the $Ca^{2+}$ content of the dissecting media. In addition, a combination of thin layer chromatography and high performance liquid chromatography showed the presence of DOPA and DO PAC-like compounds in the jellyfish. The glyoxylic acid method for catecholamines suggested that a population of small cells, neither swimming motor neurons nor B-like neurons, had dopaminergic systems. From all these results, it is suggested here that DA synthesized from DOPA in some cells is released. being dependent on calcium concentrations, into a synaptic cleft and degraded into DOPAC after acting as an inhibitory transmitter to swimming motor neurons.

  • PDF

Proprioception, the regulator of motor function

  • Moon, Kyeong Min;Kim, Jimin;Seong, Yurim;Suh, Byung-Chang;Kang, KyeongJin;Choe, Han Kyoung;Kim, Kyuhyung
    • BMB Reports
    • /
    • v.54 no.8
    • /
    • pp.393-402
    • /
    • 2021
  • In animals, proper locomotion is crucial to find mates and foods and avoid predators or dangers. Multiple sensory systems detect external and internal cues and integrate them to modulate motor outputs. Proprioception is the internal sense of body position, and proprioceptive control of locomotion is essential to generate and maintain precise patterns of movement or gaits. This proprioceptive feedback system is conserved in many animal species and is mediated by stretch-sensitive receptors called proprioceptors. Recent studies have identified multiple proprioceptive neurons and proprioceptors and their roles in the locomotion of various model organisms. In this review we describe molecular and neuronal mechanisms underlying proprioceptive feedback systems in C. elegans, Drosophila, and mice.

Genetics of Hereditary Peripheral Neuropathies (유전성 말초신경병의 유전학)

  • Cho, Sun-Young;Choi, Byung-Ok
    • Journal of Genetic Medicine
    • /
    • v.6 no.1
    • /
    • pp.25-37
    • /
    • 2009
  • Hereditary peripheral neuropathies can be categorized as hereditary motor and sensory neuropathies (HMSN), hereditary motor neuropathies (HMN), and hereditary sensory neuropathies (HSN). HMSN, HMN, and HSN are further subdivided into several subtypes. Here, we review the most recent findings in the molecular diagnosis and therapeutic strategy for hereditary peripheral neuropathies. The products of genes associated with hereditary peripheral neuropathy phenotypes are important for neuronal structure maintenance, axonal transport, nerve signal transduction, and functions related to the cellular integrity. Identifying the molecular basis of hereditary peripheral neuropathy and studying the relevant genes and their functions is important to understand the pathophysiological mechanisms of these neurodegenerative disorders, as well as the processes involved in the normal development and function of the peripheral nervous system. These advances and the better understanding of the pathogenesis of peripheral neuropathies represent a challenge for the diagnoses and managements of hereditary peripheral neuropathy patients in developing future supportive and curative therapies.

  • PDF

Two cases of spinal muscular atrophy type 1 with extensive involvement of sensory nerves (광범위한 감각신경 침범을 동반한 척수성 근위축증 2예)

  • Lee, Ran;Chung, Sochung;Koh, Sung-Eun;Lee, In Kyu;Lee, Jongmin
    • Clinical and Experimental Pediatrics
    • /
    • v.51 no.12
    • /
    • pp.1350-1354
    • /
    • 2008
  • Spinal muscular atrophy (SMA) is an autosomal recessive disease characterized by diffuse proximal and distal weakness due to deletion of the survival motor neuron (SMN) gene localized on chromosome 5 (5q11.2-13.3). SMA has been considered as a pure lower motor neuron disorder, and a definitive diagnosis can be established by molecular genetic testing. Here, we describe two patients with severe hypotonia and frequent aspirations at early infancy. Nerve conduction studies showed more extensive sensory involvement in these patients diagnosed to have SMA by genetic study than in classical cases of SMA. To the best of our knowledge, this is the first report of SMA Type 1 with sensory nerve involvement in Korea.

Cloning and Sequence Analysis of the Kinesin Gene in Schizosaccharomyces pombe (Schizosaccharomyces pombe의 Kinesin 유전자의 클로닝과 염기서열분석)

  • 정재욱;최성민;김형배;이명석
    • Korean Journal of Microbiology
    • /
    • v.35 no.1
    • /
    • pp.18-24
    • /
    • 1999
  • Kinesin has been discovered in Saccharomyces cerevisiae, Aspergillus nidulans, and Drosophila melanogaster and it has major roles in the movemenl of chromosomes and separation of spindle poles. In this study, a gene encoding kinesin heavy chain in Schizosaccharo~n)~ces pombe was cloned by using the polymerase chain reaction with degenerated primcrs corresponding to highly conserved regions of the kinesin heavy chain motor domain. The kinesin gene in S pombe contains an open reading frame of 2496 base pairs and encodes a kinesin prolein of 832 amino acids with a molecular weight of 96 kd. From thc comparison of the predictcd amino acids of the newly cloned kinesin, the kinesin in S. pornbe belongs to the C-terminal motor subfamily of kincsin-related protein.

  • PDF

Control of a Magnetic Suspension System with Inductive Sensors for a High Vacuum Turbomolecular Pump (Inductive Sensor를 이용한 고진공 분자펌프용 자기부상계의 제어)

  • 노승국;박병철;정민경;노명규;박종권;경진호;구본학
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.361-365
    • /
    • 2002
  • In this paper, a magnetic suspension system with inductive sensors fur a high vacuum turbomolecular pump(TMP) is discussed. The performance of designed inductive position sensor is evaluated by static and dynamic test, and the test results show sensitivity of about 6,000 V/m and dynamic bandwidth of 750 ㎐. The protype of magnetic suspension system is designed and constructed with 5-axis magnetic bearing, inductive sensor and BLDC internal motor. With DSP based digital PID control system, the prototype is examined its high damping ratio and stable operation up to 20,000 rpm of rotation.

  • PDF

Effect of Dopamine on a Voltage-Gated Potassium Channel in a Jellyfish Motor Neuron

  • Chung, Jun-Mo;Spencer, Andrew N.
    • BMB Reports
    • /
    • v.29 no.2
    • /
    • pp.151-155
    • /
    • 1996
  • To swimming motor neurons (SMNs) of Polyorchis penicillatus, a hydrozoan medusae, dopamine (DA) acts as an inhibitory neurotransmitter by hyperpolarizing its membrane potential and decreasing its firing rate as well. Such an inhibitory action of DA is caused by an increased permeability to potassium (K) ions. To investigate whether voltage-gated K channels are directly responsible for the membrane hyperpolarization induced by DA, we employed whole-cell voltage clamp configuration. One ${\mu}M$ DA applied to SMNs increased the peak and rear values of voltage-gated K currents by 37 and 54%, respectively, in a reversible manner. Combined with subtraction analysis, this result suggests that the outflux of K ions by DA in SMNs occurs mainly through rectifier-like K channels.

  • PDF