• Title/Summary/Keyword: 분자 진단

Search Result 336, Processing Time 0.028 seconds

Nanomagnetics-biomedical Convergence for Next Generation Biomedical Assays (나노자성-바이오.메디컬 컨버젼스 연구)

  • Kim, Cheol-Gi
    • Journal of the Korean Magnetics Society
    • /
    • v.20 no.4
    • /
    • pp.167-172
    • /
    • 2010
  • To meet on going challenges in nano-biomedical technology, the convergence of "spintronics", "biomedical" technology is a major break through in imaging, diagnosis and therapy, high-throughput genomic analysis. Especially magnetic bioassay is one of crucial devices for early diagnosis of specific analytes, point-of-care and U-health care application. In this paper, current status on high resolution magnetic sensors for bioassay and on-chip magnets for biomolecule transportation will be reviewed.

Trends in Diagnostic Technology for Respiratory Infectious Disease (호흡기 감염병 진단 기술 동향)

  • J.W. Park;H.-S. Seo;C. Huh;S.J. Park
    • Electronics and Telecommunications Trends
    • /
    • v.39 no.4
    • /
    • pp.54-62
    • /
    • 2024
  • The emergence and resurgence of novel respiratory infectious diseases since the turn of the millennium, including SARS, H1N1 flu, MERS, and COVID-19, have posed a significant global health threat. Efforts to combat these threats have involved various approaches, however, continued research and development are crucial to prepare for the possibility of emerging viruses and viral variants. Direct detection methods for viral pathogens include molecular diagnostic techniques and immunodiagnostic methods, while indirect diagnostic methods involve detecting changes in the condition of infected patients through imaging diagnostics, gas analysis, and biosignal measurement. Molecular diagnostic techniques, utilizing advanced technologies such as gene editing, are being developed to enable faster detection than traditional PCR methods, and research is underway to improve the efficiency of diagnostic devices. Diagnostic technologies for infectious diseases continue to evolve, and several key trends are expected to emerge in the future. Automation will facilitate widespread adoption of rapid and accurate diagnostics, portable diagnostic devices will enable immediate on-site diagnosis by healthcare professionals, and advancements in AI-based deep learning diagnostic models will enhance diagnostic accuracy.

The Detection and Diagnosis Methods of Infectious Viroids caused Plant Diseases (식물체에 감염성 질병을 유발하는 바이로이드 검출 및 진단 방법)

  • Lee, Se Hee;Kim, Yang-Hoon;Ahn, Ji-Young
    • Journal of Life Science
    • /
    • v.26 no.5
    • /
    • pp.620-631
    • /
    • 2016
  • Viroids are about 250-400 base pair of short single strand RNA fragments have been associated with economically important plant diseases. Due to the lack of protein expression capacity associated with replication, it is very difficult to diagnosis viroid diseases in serological methods. For detecting viroid at plants, molecular-based techniques such as agarose gel electrophoresis, polyacrylamide gel electrophoresis (PAGE), DNA-hybridization, blotting analysis and conventional RT-PCR are reliable. Real-time RT-PCR methods that grafted on RT-PCR methods with improved confirmation methods have been also utilized. However, they are still labor-intensive, time-consuming, and require personnel with expertise. Loop-mediated Isothermal Amplification (LAMP) method is a nucleic acid amplification method under the isothermal condition. The LAMP methodology has been reported to be simple, rapid, sensitive and field applicable in detecting a variety of pathogens. The results of LAMP method can be colorized by adding a visible material such as SYBR green I, Evagreen, Calcein, Berberine and Hydroxy naphthol blue (HNB) with simple equipment or naked eyes. The combination of LAMP method and nucleic pathogens, viroids, can be used to realize simple diagnosis platform for the genetic point-of care testing system. The aim at this review is to summary viroid-caused diseases and the simple visible approach for diagnosing viroids using Loop-mediated Isothermal Amplification (LAMP) method.

Designing a Molecular Diagnostic Laboratory for Testing Highly Pathogenic Viruses (고병원성 바이러스 검사를 위한 분자진단검사실 구축)

  • Jung, Tae Won;Jung, Jaeyoung;Kim, Sunghyun;Kim, Young-Kwon
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.53 no.2
    • /
    • pp.143-150
    • /
    • 2021
  • The recent spread of novel and highly variant pathogenic viruses, including the coronavirus (SARS-CoV-2), has increased the demand for diagnostic testing for rapid confirmation. This has resulted in investigating the functional capability of each space, and preparing facility guidelines to secure the safety of medical technologists. During viral evaluations, there is a requirement of negative pressure facilities along with thread separation, during pre-treatment of samples and before nucleic acid amplification. Space composition therefore needs to be planned by considering unidirectional air flow. This classification of safety management facilities is designated as biosafety level 2, and personal protective equipment is placed accordingly. In case of handling dangerous materials, they need to be carried out of the biosafety cabinet, and sterilizers are required for suitable disposal of infectious agents. A common feature of domestic laboratories is maintenance of the sample pre-treatment space at a negative pressure of -2.5 Pa or less, and arranging separate pre-treatment and reagent preparation spaces during the test process. We believe that the data generated in this study is meaningful, and offers an efficient direction and detailed flow for separation of the inspection process and space functions. Moreover, this study introduces construction of the laboratory by applying the safety management standards.

Laboratory Diagnosis of Coronavirus Disease 19 (COVID-19) in Korea: Current Status, Limitation, and Challenges (국내 중증 급성 호흡기 증후군 코로나 바이러스의 검사실 내 진단: 현재, 한계점 그리고 직면한 과제)

  • Song, Gi Seon;Lee, You-Rim;Kim, Sungmin;Kim, Wontae;Choi, Jungwon;Yoo, Dahyeon;Yoo, Jungyoung;Jang, Kyung-Tae;Lee, Jaewang;Jun, Jin Hyun
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.52 no.3
    • /
    • pp.284-295
    • /
    • 2020
  • In December 2019, the first coronavirus disease- 2019 (COVID-19) patient was reported in Wuhan, Hubei Province, China. Since then, the number of patients who suffered severe acute respiratory syndrome caused by the novel Coronavirus (SARS-CoV-2 or 2019-nCoV) has increased dramatically in Korea. This new variant virus induces pulmonary diseases, including cough, sore throat, rhinorrhea, dyspnea, and pneumonia. Because SARS-CoV-2 is an RNA virus, real-time reverse-transcriptase PCR has been used widely to diagnose COVID-19. As the Korea Centers for Disease Prevention and Control (KCDC) and Ministry of Food & Drug Safety (MFDS) approved emergency use authorization, clinical specimens collected from COVID-19 patients and even healthy people have been clinically diagnosed by laboratory medicine. Based on a literature search, this paper reviews the epidemiology, symptoms, molecular diagnostics approved by KCDC, a current diagnosis of COVID-19 in the laboratories, the difference between molecular and serological diagnosis, and guidelines for clinical specimens. In addition, the Korean guidelines of biosafety for clinical laboratory scientists are evaluated to prevent healthcare-associated infection. The author's experience and lessons as clinical laboratory scientists will provide valuable insights to protect the domestic and international health community in this COVID-19 pandemic around the world.

Staining patterns of squamous cell carcinomas of the larynx by monoclonal anti-cytokeratin antibodies (Monoclonal anticytokeratin antibodies 에 의한 후두편평세포암의 발현양상)

  • 도남용;전세영;이성재;최봉남
    • Proceedings of the KOR-BRONCHOESO Conference
    • /
    • 1993.05a
    • /
    • pp.88-88
    • /
    • 1993
  • Immunohistochemical staining for keratin proteins may be useful as a diagnostic parameter in head and neck neoplasm. Our study evaluates the keratin antibody staining properties of normal tissues and squamous cell carcinoma of the vocal folds from surgical procedures performed on 27 cases. In normal epithelia, low molecular weight cytokeratins were strongly positive in basal layer but apparently reduced in suprabasal layers and completely negative in superficial layer. In invasive squamous cell carcinomas, low molecular weight anti-ck Ab were positive in all carcinoma cells of poorly differentiated carcinomas. On the other hand, high molecular weight anti-ck Ab were positive in almost carcinoma cells of well differentiated carcinomas.

  • PDF

Molecular diagnosis of fragile X syndrome in a female child (여아 환자에서의 취약 X 증후군의 분자유전학적 진단)

  • Jeong, Seon-Yong;Yang, Jeong-A;Kim, Hyon-J.
    • Journal of Genetic Medicine
    • /
    • v.5 no.1
    • /
    • pp.41-46
    • /
    • 2008
  • Purpose : Fragile X syndrome (FXS) is the most common heritable cause of cognitive impairment. FXS is caused by hyperexpansion and hypermethylation of a polymorphic CGG trinucleotide repeat in the 5' untranslated region of the fragile X mental retadation-1(FMR1) gene. Combination of Southern blotting and simple polymerase chain reaction(PCR) amplification of the FMR1 repeat region is commonly used for diagnosis in females. To give a definite diagnosis in a female child suspected of having FXS, we carried out the molecular diagnostic test for FXS using the recently developed Abbott Molecular Fragile X PCR Kit. Methods : The PCR amplification of the FMR1 repeat region was performed using the Abbott Mdecular Fragile X PCR Kit. The amplified products were analyzed by size-separate analysis on 1.5% agarose gels and by DNA fragment analysis using Gene scan. Results : Agarose gel and Gene scan analyses of PCR products of the FMR1 repeat region showed that the patient had two heterozygous alleles with a normal 30 repeats and full mutation of >200 repeats whereas her mother had two heterozygous alleles with the normal 30 repeats and premutation of 108 repeats, suggesting that the premutation of 108 repeats in her mother may have led to the full mutation of >200 repeats in the patient. Conclusion : We diagnosed FXS in a female patient using a simplified molecular diagnostic test. This commercially available diagnostic test for FXS, based on PCR, may be a suitable alternative or complement method to Southern blot analysis and PCR analysis and/or methylation specific(MS)-PCR analysis for the molecular diagnosis of FXS in both males and females.

  • PDF

Monitoring of Bifenazate Resistant Two-spotted Spider Mite, Tetranychus urticae Using Molecular Detection Method (분자학적 진단방법을 이용한 bifenazate 저항성 점박이응애 모니터링)

  • Lee, Kyu-Ri;Shin, Yun-Ho;Cho, Sun-Ran;Koo, Hyun-Na;Choi, Jang-Jeon;Ahn, Ki-Su;Kim, Gil-Hah
    • The Korean Journal of Pesticide Science
    • /
    • v.15 no.1
    • /
    • pp.61-67
    • /
    • 2011
  • In 2010, two-spotted spider mite, Tetranychus urticae was collected from the rose greenhouse and apple orchards in Cheongju (CJ), Chungju (CUJ)-1, CUJ-2, Kangjin (KJ), Yesan (YS), and Yeongju (YJ). Among them, KJ and YS strain showed high resistance to bifenazate of 964.5- and 1l30-fold, respectively. The other strains showed low resistance to bifenazate. By analyzing the mitochondrial cytochrome b (cytb) sequence, G126S point mutation was detected in KJ and YS strain. Thus, G126S point mutation in the mitochondrial cytb was available molecular detection marker for selection of bifenazate resistant T. urticae. Two molecular detection methods, quantitative sequencing (QS) and PCR amplification of specific alleles (PASA) were well detected specific G126S point mutation. Therefore, these methods can be used to monitor the resistance allele in field population of T. urticae and bifenazate resistance management strategy.

Status of Research and Development of Foot and Mouth Disease Diagnosis (Review) (구제역 진단법 연구개발 현황 (총설))

  • Kwak, Kyeongrok;Choi, So-Young;Kim, Eunyoung;Hwang, Choon Hong;Lee, Sung-Jin
    • ANNALS OF ANIMAL RESOURCE SCIENCES
    • /
    • v.28 no.2
    • /
    • pp.78-96
    • /
    • 2017
  • Foot-and-mouth disease (FMD) is a infection that can easily spread when it occurs and causes serious economic damage because of the existence of multiple serotypes of the virus and extreme contagiousness. The most effective method in preventing the transmission of FMD virus (FMDV) is the culling of livestock and additional vaccination in the other areas depending on the spreading rate and situation. Diagnostic methods are utilized not only for the definite diagnosis of FMD but also for identification of serotype, and confirmation of antibody production after vaccination. Although many methods have been developed to diagnose, they are not still enough to detect accurately the disease in a short time. Therefore, it has been needed new diagnostic methods improved from existing methods. Previous methods were based on the enzyme-linked immunosorbent assay (ELISA) as a serological diagnostic method, or polymerase chain reaction (PCR), which is a molecular genetic method. The recent technology has been performing about the combination of both methods and how to make it faster, less costly, more sensitive and accurate way.

분자세포유전학적 기법을 이용한 Freematin의 진단

  • 강민영;전혜정;손시환
    • Proceedings of the KSAR Conference
    • /
    • 2003.06a
    • /
    • pp.23-23
    • /
    • 2003
  • 프리마틴(freemartin)이라 함은 반추동물들 중 특히 소에서 나타나는 간성(intersex)형태로 이성 쌍자의 경우 태어난 암컷의 대부분이 정상적인 자성 생식기의 발육 및 발생양상을 지니지 못하여 생식불능상태로 되는 것으로 알려져 있다. 최근 실용화된 수정란이식이나 쌍자유기 등의 기술은 현재 일반 농가에 까지 정책적으로 확대 보급되어 산업화되고 있는 실정이나 불행히도 이러한 기술들을 이용하여 생산된 개체들 중 상당수가 이성쌍자로 이들 중 암컷 개체들은 거의 freemartin으로 생산되어 실지 노력에 비해 경제적 효과들을 크게 반감시키고 있다. 뿐만 아니라 생산된 freemartin 개체들에 대하여 조기 진단 없이 다만 형태적으로 암컷으로 판단하여 번식우로 사양관리 함에 따른 경제적 손실이 매우 크다 할 수 있겠다.

  • PDF