• Title/Summary/Keyword: 분자계통수

Search Result 62, Processing Time 0.025 seconds

Chloroplast genome sequence and PCR-based markers for S. cardiophyllum (감자 근연야생종 Solanum cardiophyllum의 엽록체 전장유전체 구명 및 이를 이용한 S. cardiophyllum 특이적 분자마커의 개발)

  • Tae-Ho Park
    • Journal of Plant Biotechnology
    • /
    • v.50
    • /
    • pp.45-55
    • /
    • 2023
  • The diploid Solanum cardiophyllum, a wild tuberbearing species from Mexico is one of the relatives to potato, S. tuberosum. It has been identified as a source of resistance to crucial pathogens and insects such as Phytophthora infestans, Potato virus Y, Colorado potato beetle, etc. and is widely used for potato breeding. However, the sexual hybridization between S. cardiophyllum and S. tuberosum is limited due to their incompatibility. Therefore, somatic hybridization can introduce beneficial traits from this wild species into the potato. After somatic hybridization, selecting fusion products using molecular markers is essential. In the current study, the chloroplast genome of S. cardiophyllum was sequenced by next-generation sequencing technology and compared with those of other Solanum species to develop S. cardiophyllum-specific markers. The total length of the S. cardiophyllum chloroplast genome was 155,570 bp and its size, gene content, order and orientation were similar to those of the other Solanum species. Phylogenic analysis with 32 other Solanaceae species revealed that S. cardiophyllum was expectedly grouped with other Solanum species and most closely located with S. bulbocastanum. Through detailed comparisons of the chloroplast genome sequences of eight Solanum species, we identified 13 SNPs specific to S. cardiophyllum. Further, four SNP-specific PCR markers were developed for discriminating S. cardiophyllum from other Solanum species. The results obtained in this study would help to explore the evolutionary aspects of Solanum species and accelerate breeding using S. cardiophyllum.

Phylogeny of the family Ophioglossaceae with special emphasis on genus Mankyua (제주고사리삼을 중심으로한 고사리삼과 식물의 계통)

  • Sun, Byung-Yun;Baek, Tae Gyu;Kim, Young-Dong;Kim, Chan Soo
    • Korean Journal of Plant Taxonomy
    • /
    • v.39 no.3
    • /
    • pp.135-142
    • /
    • 2009
  • Phylogeny of the family Ophioglossaceae and a phylogenetic position of Mankyua were estimated through analyses of chloroplast rbcL gene sequences and spore morphology. Sequence analysis of the rbcL gene clearly indicated that there are two major lineages in the family Ophioglossaceae: Botrychioid lineage and Ophioglossoid lineage. The Botrichioid lineage is composed of three distinct clades: Botrychium, Helminthostachys and Mankyua, where Helminthostachys and Mankyua were placed as sister groups to the Botrychium. Within the genus Botrychium, subgenera Septridium and Botrychium were monophyletic, while taxa of subgen. Botrypus branched as sister of the two, successively, thus making a non-monophyletic group. Ophioglossum formed the Ophioglossoied lineage, where the subgen. Ophioglossum is monophyletic, while subgen. Cheiroglossa and Ophoderma formed a sister relationship with subgen. Ophioglossum. In terms of external morphology and spores, Mankyua is most similar to Helminthostachys, however, patristic distance in the cladogram and trophophore characteristics of the two genera are distinct. Therefore, Mankyua is a well defined genus within the family in terms of morphology as well as molecular phylogeny which places it in basal position of the Botrychioid lineage on the gene tree.

Podosphaera pannosa Causes Powdery Mildew and Rusty Spot on Peach Fruits from Korea (복숭아 과실에서 흰가루 증상 및 녹얼룩점 증상을 일으키는 Podosphaera pannosa)

  • Shin, Hyeon-Dong;Cho, Sung-Eun;Choi, In-Young;Seo, Kyoung-Won
    • The Korean Journal of Mycology
    • /
    • v.46 no.2
    • /
    • pp.193-199
    • /
    • 2018
  • The fungus, Podosphaera pannosa, was identified in 1991 as the cause of powdery mildew symptoms on peach (Prunus persica var. persica) fruit from Korea based on the morphological characteristics of the conidial state. Recently, however, in Serbia and France, the cause of 'rusty spot' found on peach fruit was identified as P. leucotricha, and the cause of 'powdery mildew' on nectarine (Prunus persica var. nucipersica) fruit was identified as P. pannosa. To confirm the identity of the Korean pathogen, we collected four samples of powdery mildew from Korean peach fruit: three with the 'powdery mildew' symptom and one with the 'rusty spot' symptom. Morphological examination of the four samples confirmed P. pannosa as the pathogen. Internal transcribed spacer sequences of rDNA were analyzed for molecular characterization. A phylogenetic tree showed that the Korean isolates were clustered into a clade containing P. pannosa from Rosa species, with high sequence similarities of more than 99%. Thus, we showed that the powdery mildew and rusty spot symptoms on peach fruits from Korea are associated with P. pannosa.

Development of PCR-based markers for selecting plastid genotypes of Solanum hjertingii (Solanum hjertingii 색소체 유전자형 선발을 위한 PCR 기반 분자마커 개발)

  • Tae-Ho Park
    • Journal of Plant Biotechnology
    • /
    • v.50
    • /
    • pp.34-44
    • /
    • 2023
  • The tetraploid Solanum hjertingii, a wild tuber-bearing species from Mexico is a relative of potato, S. tuberosum. The species has been identified as a potential source of resistance to blackening for potato breeding. It does not exhibit enzymatic browning nor blackspot which are physiological disorders. However, due to their sexual incompatibility, somatic hybridization between S. hjertingii and S. tuberosum must be used to introduce various traits from this wild species into potato. After somatic hybridization, molecular markers are essential for selecting fusion products. In this study, the chloroplast genome of S. hjertingii was sequenced by next-generation sequencing technology and compared with those of other Solanum species to develop specific markers for S. hjertingii. The chloroplast genome has a total sequence length of 155,545 bp, and its size, gene content, order and orientation are similar to those of the other Solanum species. Phylogenic analysis including 15 other Solanaceae species grouped S. hjertingii with S. demissum, S. hougasii, and S. stoloniferum. After detailed comparisons of the chloroplast genome sequence with eight other Solanum species, we identified one InDel and seven SNPs specific to S. hjertingii. Based on these, five PCR-based markers were developed for discriminating S. hjertingii from other Solanum species. The results obtained in this study will aid in exploring the evolutionary aspects of Solanum species and accelerating breeding using S. hjertingii.

Molecular phylogeny and divergence of photosynthetic pathways of Korean Cypereae (Cyperaceae) (한국산 방동사니족(사초과) 식물의 분자계통과 광합성경로의 분화)

  • Jung, Jongduk;Ryu, Youngil;Choi, Hong-Keun
    • Korean Journal of Plant Taxonomy
    • /
    • v.46 no.3
    • /
    • pp.314-325
    • /
    • 2016
  • Multiple changes of the photosynthesis pathway are independent evolutionary events occurring in the phylogeny of flowering plants, and such changes have occurred more than five times in Cyperaceae. In the tribe Cypereae, the C4 photosynthetic pathway appeared only once and is regarded as a synapomorphy of the C4 plants within this tribe. The morphological delimitation of genera within Cypereae does not correspond to their molecular phylogenetic relationships. In this study, the molecular phylogeny was compared with the photosynthetic pathways of Korean Cypereae (18 species of Cyperus, 1 species of Kyllinga, and 1 species of Lipocarpha). The photosynthetic pathways were determined by observing the leaf anatomy. The phylogenetic analysis was performed using three DNA regions (nrITS, rbcL, and trnL-F). According to the position of the photosynthetic tissue, 4 species (C. difformis, C. flaccidus, C. haspan, and C. tenuispica) and 16 species (14 Cyperus species, K. brevifolia var. leiolepis, and L. microcephala) were confirmed as C3 and C4 plants, respectively. Tribe Cypereae was divided into the CYPERUS and FICINIA clades, and all species of Korean Cypereae plants belonged to the CYPERUS clade in the phylogenetic analysis. Within the CYPERUS clade, C4 plants were monophyletic but their phylogenetic relationships were unclear. The genera Kyllinga and Lipocarpha were not supported as an independent genus in either case because they were nested by the Cyperus species in the molecular phylogenetic trees in the present and in previous studies. To determine the classification within the CYPERUS clade, a detailed morphological study and a molecular phylogenetic analysis at a high resolution will be necessary.

Comparisons of amino acid sequences of ${\beta}$-globin gene between carp and other vertebrates (잉어와 척추동물들의 ${\beta}$-globin 아미노산배열의 비교)

  • 진덕희
    • Journal of Life Science
    • /
    • v.8 no.3
    • /
    • pp.249-256
    • /
    • 1998
  • The purpose of this study was to understand the evolutionary relationships between fish and other vertebrates which had DNA with the genetic defects in homoglobin expression, with comparison to the nucleotide homologies of the ${\beta}$-globin genes. The predicted amino acid sequence from carp ${\beta}$-globin gene was compared with those of other vertebrates from the published data. The nucleotide homologies of the predicted amino acid sequence from the carp ${\beta}$-globin gene with those of goldfish and mirror carp were high, and the rates were 97.3% and 93.9%, respectively. On the other hand, with the previously reported ${\beta}$-globins of goat, frog, human, rat, goose, chicken, and duck, it showed low homology ranging from 45.9 to 58.1%. The carp ${\beta}$-globin has one inserted amino acid residue, which was also found in other fish ${\beta}$globin, but not in other vertebrate ${\beta}$-globins.

  • PDF

Molecular Phylogenetic Study of Korean Tilia L. (한국산 피나무속(Tilia L.) 식물의 분자 계통학적 연구)

  • Boo, Daun;Park, Seon Joo
    • Korean Journal of Plant Resources
    • /
    • v.29 no.5
    • /
    • pp.547-554
    • /
    • 2016
  • The genus Tilia is characterized by linear form bracts of which the lower part is attached to the peduncle of a cyme. This character is distinguished from the others genus of Malvaceae. The purpose of this study is verifying the phylogenetic relationship of genus Tilia. Phylogenetic analyses were conducted to evaluate relationships of 10 taxa of Tilia in Korea and Japan including one outgroup (Gossypium hirsutum). The molecular phylogenetic analyses were conducted with sequences based on ITS, trnL-F and rpl32-trnL region. The combined data result of ITS, trnL-F and rpl32-trnL was formed by 6 clades. T. kiusiana situated as the most basal clade. T. amurensis, T. taquetii and T. rufa are composed a clade. T. koreana, T. insularis and T. japonica was formed independent clade. T. insularis has the closest relationship with T. japonica. T. miqueliana, T. mandshurica, and T. megaphylla are composed a clade and showed a sister relationship than other species.

Genetic Relationships among the Poplars of Section Leuce (Genus Populus) revealed by RAPD Marker Analysis (RAPD 표식자(標識者) 분석(分析)에 의한 사시나무속(屬) Leuce절(節) 포플러의 유연관계(類緣關係))

  • Hong, Kyung-Nak;Hyun, Jung Oh;Hong, Yong Pyo
    • Journal of Korean Society of Forest Science
    • /
    • v.87 no.2
    • /
    • pp.153-163
    • /
    • 1998
  • Genetic relationships of some poplars in the section Leuce, including 5 species and 11 clones of Populus alba${\times}$glandulosa, were investigated on the basis of RAPD marker analysis. Twenty-two of the 88 arbitrary 10-mer primers, showed reproducible amplification in the preliminary experiment with 6 samples, were used for PCR and generated a total of 181 RAPD markers. Genetic relationships among the analyzed samples were tested by two phenetic methods of the UPGMA and the neighbor-joining, which revealed the close genetic relationship between P. glandulosa and P. alba. And the close genetic relationship between P. glandulosa and P. davidiana was ascertained by the principal component analysis. Based on the observation of the close genetic relationship between them, it was deduced that P. glandulosa might be originated by the saltational speciation caused by the hybridization between P. alba and P. davidiana in nature.

  • PDF

Genetic Study of the Class Dinophyceae Including Red Tide Microalgae Based on a Partial Sequence of SSU Region : Molecular Position of Korean Isolates of Cochlodinium polykrikoides Margalef and Gyrodinium aureolum Hulburt (SSU 부위의 유전자 염기서열 분석에 의한 한국연안에서 분리한 Cochiodinium polykrikoides Margalef와 Gyrodinium aurelum Hulburt 적조생물의 분자생물학적 연구)

  • Cho, Eun-Seob
    • Journal of Life Science
    • /
    • v.14 no.4
    • /
    • pp.593-607
    • /
    • 2004
  • The nucleotide sequence for a nuclear-encoded small subunit rDNA (SSU rDNA) was determined for 43 species of the class Dinophyceae, including harmful algae Cochlodinium polykrikoides and Gyrodinium aureolum. These sequences and data analyses were performed by parsimony, distances and maximum likelihood methods in PHYLIP (Phylogenetic Inference Package) version 3.573c. The species Noctiluca scintillans, Gonyaulax spinifern and Crypthecodinium cohnii occupied a basal position within the Dino- phyceae in our analyses. The genera Alexandrium and Symbiodinium were monophyletic (supported by a bootstrap value of >70%), whereas the genera Gymnedinium and Gyrodinium formed polyphyletic nodes, for which bootstrap support was strong (>70%) in the neighbor-joining and maximum likelihood methods except for the PHYLIP parsimony analysis (=59%). The sequence divergence between G. aureolum and G. dorsum/ G. galathenum was the largest at 7.4% (45 bp), whereas G. aureolum and G. mikimotoi showed an extremely low value of genetic divergence of 0.9% (5 bp). The genetic divergence between C. polykrikoides and G. aureolum was a low value of 5.2% (31 bp). In the phylogenetic analysis, the placement of G. aureolum and C. polykrikoides was closer to the genus Gymnodinium than to the genus Gyrodinium, which was supported by a moderate bootstrap value.

Identification of Effective Microorganisms Isolated from Fermented Stevia Extract and Their Antimicrobial Activity (스테비아 추출물 발효액에서 분리된 유효 미생물들의 동정 및 항미생물 활성)

  • Lee, Tae-Hyeong;Park, Su-Sang;Lee, Yong-Eok
    • Journal of Life Science
    • /
    • v.16 no.6
    • /
    • pp.994-1000
    • /
    • 2006
  • Stevia rebaudiana Bertoni is a sweet herb of the Asteraceae family originally derived from South America. Twenty three bacterial strains and ten yeast strains were isolated from fermented Stevia extract and identified by general taxonomic methods and molecular genetic method. Isolated strains from fermented Stevia extract include ten species of bacteria which belong to five genus and one species of yeast. Based on 16S and 18S rDNA sequence analysis, phylogenetic trees were constructed. Antimicrobial activity of the isolated strains was examined against various bacteria and plant-pathogenic fungi. Among them, Lactobacillus paracasei SB13 showed strong antibacterial activity towards a wide range of bacteria. These results may be useful to develop environmentally friendly microbial agent for soil improvement.