Comparisons of amino acid sequences of ${\beta}$-globin gene between carp and other vertebrates

잉어와 척추동물들의 ${\beta}$-globin 아미노산배열의 비교

  • 진덕희 (강릉대학교 생명과학대학 해양생명공학부)
  • Published : 1998.06.01

Abstract

The purpose of this study was to understand the evolutionary relationships between fish and other vertebrates which had DNA with the genetic defects in homoglobin expression, with comparison to the nucleotide homologies of the ${\beta}$-globin genes. The predicted amino acid sequence from carp ${\beta}$-globin gene was compared with those of other vertebrates from the published data. The nucleotide homologies of the predicted amino acid sequence from the carp ${\beta}$-globin gene with those of goldfish and mirror carp were high, and the rates were 97.3% and 93.9%, respectively. On the other hand, with the previously reported ${\beta}$-globins of goat, frog, human, rat, goose, chicken, and duck, it showed low homology ranging from 45.9 to 58.1%. The carp ${\beta}$-globin has one inserted amino acid residue, which was also found in other fish ${\beta}$globin, but not in other vertebrate ${\beta}$-globins.

일본의 잡종잉어 ${\beta}$사 globin유전자의 염기배열로부터 추정되는 아미노산 배열과 이미 보고되어 있는 ${\beta}$사 globin의 아미노산 배열을 비교한 결과, 금붕어와 가장 높은 상동성인 97.3%를 나타내었으며, 거울잉어 ${\beta}_B$와 95.2%, 거울 잉어 ${\beta}_A$와 93.9%의 높은 상동성을 나타내었다. 다음으로 송어(76.9%), 전기뱀장어(71.4%), 혹다랑어(61.9%), 성대(59.9%), 양태(58.5%), 시라칸스(52.4%), 폐어(46.9%), 상어(38.1%) 및 전기가오리(36.1%)의 순으로 나타났다. 또한 ${\beta}$사 globin의 아미노산 배열의 상동성을 기초로하여 분자진화의 계통수를 구하였을 때, 각각의 진화거리로부터 일본의 잡종잉어와 금붕어가 0.013으로 가장 가깝고, 분기한 것이 가장 근년인 것으로 생각되어졌다. 그 다음이 같은종인 거울잉어로 진화거리는 0.035였으며, 연골어류나 폐어와는 그 진화거리가 크게 벌어져 있어 상당히 오래전에 분기한 것으로 추정되었다. 일본 잡종이어의 ${\beta}$사 globin유전자로부터 추정되는 아미노산 배열과 이미 보고되어 있는 다른 척추동물의 아미노산 배열과 비교한 결과, 상동성은 오리(58.1%), 닭(57.8%), 쥐(55.1%), 사람(52.4%), 개구리(50.7%), 및 염소(45.9%)의 순으로 나타났다.

Keywords

References

  1. Nature/ v.351 Close tetrapod relationships of the coelacanth Latimeria indicated by haemoglobin sequences Gorr, T.;Kleinschmidt, T.;Fricke, H.
  2. Hopp-Seyler's Z. Physiol. Chem. v.365 Primary structure, biochemical and physiological aspects of hemoglobin from south american lungfish(Lepidosiren paradoxus, Dipnoi) Rodewald, K.;Stangl, A.;braunitzer, G.
  3. Biol. Chem. Hoppe-Seyler v.370 The primary structure of electric ray hemoglobin(Torpedo marmorata) ; Bohr effect and phosphage interaction Huber, F.;Braunitzer, G.
  4. Aust. J. Biol. Sci. v.30 Haemoglobins of the shark, Heterodontus portusjacksoni Ⅲ : Amino acid sequence of the β-chain Fisher, W. K.;Nash, A. R.;Thompson, E. O. P.
  5. Biol. Chem. Hoppe-Seyler v.366 The Primary Structure of the Hemoglobin of the Dogfish Shark(Squalus acanthias) Aschauer, H.;Weber, R. E.;Brunitzer, G.
  6. Hoppe-Seyler's Z. Physiol. Chem. v.361 Die sequenz der βA-und βB-ketten der hamoglobine des kapfens(Cyprinus carpio L) Grujic-Injac, B;Braunitzer, G.;Stangi, A.
  7. Bioch. Bioph. Acta v.742 Primary structure of hemoglobin from Trout(Salmo irideus) amino sequence of β-chain of Hb Trout I Barra, D.;Petruzzelli, R.;Bossa, F.;Brunori, M.
  8. Hoppe-Seyler's Z. Physiol. Chem. v.365 Die primarsturktur de hamoglobins von goldfisch(Carrassius auratus) Rodewald, K.;Braunitzer, G.
  9. Biochim. Biophys. Acta v.1078 The hemoglobins of the cold-adapted Antarctic teleost Cygnodraco mawsoni Caruso, C.;Rutigliano, B.;Romano, M.;di Prisco, G.
  10. Eur. J. Biochem. v.218 A polymerising Rooteffect fish hemoglobin with high subunit heterogeneity : correlation with primary structure Fago, A.;Romano, M.;Tamburrini, M.;Coletta, M.
  11. Biol. Chem. Hoppe-Seyler v.368 Homeothermic fish and hemoglobin ; primary structure of the hemoglobin from bluefin tuna(Thunnus thynnus, Scombroidei) Rodewald, K.;Oberthur, W.;Braunitzer, G.
  12. Hoppe-Seyler's Z. Physiol. Chem. v.325 Die konstitution des normalen adulten human hamoglobins Braunitzer, G.;Gerhring-Muller, R.;Hilschmann, N.;Hilse, K.;Hobom, G.;Rudloff, V.;Wittmann-Liebold, B.
  13. Hoppe-Seyler's Z. Physiol. Chem. v.325 Die Analyse der tryptischen Peptide des Pferdehamoglobins Braunitzer, G.;Matsuda, G.
  14. Berizones in Biochemistry Zuckerkandl, E.;Pauling, L.;Kasha, M.(ed.);B. Pullman(ed.)
  15. Nature v.253 Darwinian evolution in the genealogy of haemoglobin Goodman, M.;Moore, G. W.;Matsuda, G.
  16. Fish. Sci. v.60 Cloning and the nucleotide sequence of carp β-globin Jin, D. H.;Hrono, I.;Aoki, T.
  17. Fish. Sci. v.61 The symmetrical arrangement of carp β-globin genes Jin, D. H.;Hirono, I.;Aoki, T.
  18. 遺傳子からみた40億年の生命進化 中村運
  19. Hoppe-Seyler's Z. Physiol. Chem. v.349 Die aminosauresequenz der α-ketten der beiden hauptkomponenten des karpfenhamoglobins Hilse, K.;Braunitzer, G.