• Title/Summary/Keyword: 분위수

Search Result 82, Processing Time 0.024 seconds

Analysis of AI interview data using unified non-crossing multiple quantile regression tree model (통합 비교차 다중 분위수회귀나무 모형을 활용한 AI 면접체계 자료 분석)

  • Kim, Jaeoh;Bang, Sungwan
    • The Korean Journal of Applied Statistics
    • /
    • v.33 no.6
    • /
    • pp.753-762
    • /
    • 2020
  • With an increasing interest in integrating artificial intelligence (AI) into interview processes, the Republic of Korea (ROK) army is trying to lead and analyze AI-powered interview platform. This study is to analyze the AI interview data using a unified non-crossing multiple quantile tree (UNQRT) model. Compared to the UNQRT, the existing models, such as quantile regression and quantile regression tree model (QRT), are inadequate for the analysis of AI interview data. Specially, the linearity assumption of the quantile regression is overly strong for the aforementioned application. While the QRT model seems to be applicable by relaxing the linearity assumption, it suffers from crossing problems among estimated quantile functions and leads to an uninterpretable model. The UNQRT circumvents the crossing problem of quantile functions by simultaneously estimating multiple quantile functions with a non-crossing constraint and is robust from extreme quantiles. Furthermore, the single tree construction from the UNQRT leads to an interpretable model compared to the QRT model. In this study, by using the UNQRT, we explored the relationship between the results of the Army AI interview system and the existing personnel data to derive meaningful results.

Divide and conquer kernel quantile regression for massive dataset (대용량 자료의 분석을 위한 분할정복 커널 분위수 회귀모형)

  • Bang, Sungwan;Kim, Jaeoh
    • The Korean Journal of Applied Statistics
    • /
    • v.33 no.5
    • /
    • pp.569-578
    • /
    • 2020
  • By estimating conditional quantile functions of the response, quantile regression (QR) can provide comprehensive information of the relationship between the response and the predictors. In addition, kernel quantile regression (KQR) estimates a nonlinear conditional quantile function in reproducing kernel Hilbert spaces generated by a positive definite kernel function. However, it is infeasible to use the KQR in analysing a massive data due to the limitations of computer primary memory. We propose a divide and conquer based KQR (DC-KQR) method to overcome such a limitation. The proposed DC-KQR divides the entire data into a few subsets, then applies the KQR onto each subsets and derives a final estimator by aggregating all results from subsets. Simulation studies are presented to demonstrate the satisfactory performance of the proposed method.

Animated Quantile Plots for Evaluating Response Surface Designs (반응표면실험계획을 평가하기 위한 동적분위수그림)

  • Jang, Dae-Heung
    • Proceedings of the Korean Society for Quality Management Conference
    • /
    • 2010.04a
    • /
    • pp.115-120
    • /
    • 2010
  • 반응표면실험계획들을 평가하기 위한 방법으로서 전형적인 방법이 알파벳최적화이다. 그러나 이러한 알파벳최적화(D-, A-, G-, V-최적화 등)는 하나의 수치이므로 그 유용성에도 불구하고 반응표면실험 계획들이 갖는 추정반응값분산의 분포에 대한 정보에 한계를 갖는다. 이를 극복하고자 하는 대안으로서 그래픽 방법들이 있는데 우리는 그 중에 분위수그림을 애니메이션화한 동적분위수그림을 제안할 수 있고 이 동적분위수그림을 이용하여 반응표면실험계획들이 갖는 추정반응값분산의 분포를 서로 비교, 평가 할 수 있다.

  • PDF

Accelerated Lifetime Data Analysis Using Quantile Regression (분위수 회귀를 이용한 가속수명시험 자료 분석)

  • Roh, Chee-Youn;Kim, Hee-Jeong;Na, Myung-Hwan
    • The Korean Journal of Applied Statistics
    • /
    • v.21 no.4
    • /
    • pp.631-638
    • /
    • 2008
  • Accelerated Lifetime Test is a method of estimation of lifetime quality characteristics under operation condition with the accelerated lifetime data obtained under accelerated stress. In this paper we propose estimation method with accelerated lifetime data using quantile regression. We apply the method to real data with Arrhenius and Inverse power model.

Quantile causality from dollar exchange rate to international oil price (원유가격에 대한 환율의 인과관계 : 비모수 분위수검정 접근)

  • Jeong, Kiho
    • Journal of the Korean Data and Information Science Society
    • /
    • v.28 no.2
    • /
    • pp.361-369
    • /
    • 2017
  • This paper analyzes the causal relationship between dollar exchange rate and international oil price. Although large literature on the relationship has accumulated, results are not unique but diversified. Based on the idea that such diversified results may be due to different causality at different economic status, we considers an approach to test the causal relationship at each quantile. This approach is different from the mean causality analysis widely employed by the existing literature of the causal relationship. In this paper, monthly data from May 1987 to 2013 is used for the causal analysis in which Brent oil price and Major Currencies Dollar Index (MCDI) are considered. The test method is the nonparametric test for causality in quantile suggested by Jeong et al. (2012). The results show that although dollar exchange rate causes oil price in mean, the causal relationship does not exist at most quantiles.

Model selection via Bayesian information criterion for divide-and-conquer penalized quantile regression (베이즈 정보 기준을 활용한 분할-정복 벌점화 분위수 회귀)

  • Kang, Jongkyeong;Han, Seokwon;Bang, Sungwan
    • The Korean Journal of Applied Statistics
    • /
    • v.35 no.2
    • /
    • pp.217-227
    • /
    • 2022
  • Quantile regression is widely used in many fields based on the advantage of providing an efficient tool for examining complex information latent in variables. However, modern large-scale and high-dimensional data makes it very difficult to estimate the quantile regression model due to limitations in terms of computation time and storage space. Divide-and-conquer is a technique that divide the entire data into several sub-datasets that are easy to calculate and then reconstruct the estimates of the entire data using only the summary statistics in each sub-datasets. In this paper, we studied on a variable selection method using Bayes information criteria by applying the divide-and-conquer technique to the penalized quantile regression. When the number of sub-datasets is properly selected, the proposed method is efficient in terms of computational speed, providing consistent results in terms of variable selection as long as classical quantile regression estimates calculated with the entire data. The advantages of the proposed method were confirmed through simulation data and real data analysis.

Quantile Co-integration Application for Maritime Business Fluctuation (분위수 공적분 모형과 해운 경기변동 분석)

  • Kim, Hyun-Sok
    • Journal of Korea Port Economic Association
    • /
    • v.38 no.2
    • /
    • pp.153-164
    • /
    • 2022
  • In this study, we estimate the quantile-regression framework of the shipping industry for the Capesize used ship, which is a typical raw material transportation from January 2000 to December 2021. This research aims two main contributions. First, we analyze the relationship between the Capesize used ship, which is a typical type in the raw material transportation market, and the freight market, for which mixed empirical analysis results are presented. Second, we present an empirical analysis model that considers the structural transformation proposed in the Hyunsok Kim and Myung-hee Chang(2020a) study in quantile-regression. In structural change investigations, the empirical results confirm that the quantile model is able to overcome the problems caused by non-stationarity in time series analysis. Then, the long-run relationship of the co-integration framework divided into long and short-run effects of exogenous variables, and this is extended to a prediction model subdivided by quantile. The results are the basis for extending the analysis based on the shipping theory to artificial intelligence and machine learning approaches.

Multivariate quantile regression tree (다변량 분위수 회귀나무 모형에 대한 연구)

  • Kim, Jaeoh;Cho, HyungJun;Bang, Sungwan
    • Journal of the Korean Data and Information Science Society
    • /
    • v.28 no.3
    • /
    • pp.533-545
    • /
    • 2017
  • Quantile regression models provide a variety of useful statistical information by estimating the conditional quantile function of the response variable. However, the traditional linear quantile regression model can lead to the distorted and incorrect results when analysing real data having a nonlinear relationship between the explanatory variables and the response variables. Furthermore, as the complexity of the data increases, it is required to analyse multiple response variables simultaneously with more sophisticated interpretations. For such reasons, we propose a multivariate quantile regression tree model. In this paper, a new split variable selection algorithm is suggested for a multivariate regression tree model. This algorithm can select the split variable more accurately than the previous method without significant selection bias. We investigate the performance of our proposed method with both simulation and real data studies.

On principal component analysis for interval-valued data (구간형 자료의 주성분 분석에 관한 연구)

  • Choi, Soojin;Kang, Kee-Hoon
    • The Korean Journal of Applied Statistics
    • /
    • v.33 no.1
    • /
    • pp.61-74
    • /
    • 2020
  • Interval-valued data, one type of symbolic data, are observed in the form of intervals rather than single values. Each interval-valued observation has an internal variation. Principal component analysis reduces the dimension of data by maximizing the variance of data. Therefore, the principal component analysis of the interval-valued data should account for the variance between observations as well as the variation within the observed intervals. In this paper, three principal component analysis methods for interval-valued data are summarized. In addition, a new method using a truncated normal distribution has been proposed instead of a uniform distribution in the conventional quantile method, because we believe think there is more information near the center point of the interval. Each method is compared using simulations and the relevant data set from the OECD. In the case of the quantile method, we draw a scatter plot of the principal component, and then identify the position and distribution of the quantiles by the arrow line representation method.

Combination of Value-at-Risk Models with Support Vector Machine (서포트벡터기계를 이용한 VaR 모형의 결합)

  • Kim, Yong-Tae;Shim, Joo-Yong;Lee, Jang-Taek;Hwang, Chang-Ha
    • Communications for Statistical Applications and Methods
    • /
    • v.16 no.5
    • /
    • pp.791-801
    • /
    • 2009
  • Value-at-Risk(VaR) has been used as an important tool to measure the market risk. However, the selection of the VaR models is controversial. This paper proposes VaR forecast combinations using support vector machine quantile regression instead of selecting a single model out of historical simulation and GARCH.