• Title/Summary/Keyword: 분쇄시간

Search Result 371, Processing Time 0.026 seconds

Improvement of Magnetic Properties of Nd-Fe-B Type Sintered Magnet (Nd-Fe-B계 소결자석의 자기적특성 향상 연구)

  • Kim, Yoon-B.;Jung, W.S.;Jeung, W.Y.
    • Journal of the Korean Magnetics Society
    • /
    • v.12 no.2
    • /
    • pp.57-63
    • /
    • 2002
  • In order to increase the magnetic properties of a Nd-Fe-B sintered magnet, the general factors including particle size and its distribution, volume fraction of Nd$_2$Fe$_{14}$B phase, degree of alignment of Nd$_2$Fe$_{14}$B grain, oxygen content and grain size etc. should be optimized by controlling the composition of Nd-Fe-B alloy as well as the manufacturing process. In this study, fabrication of the Nd-Fe-B sintered magnet was carried out in a laboratory scale by controlling the composition of Nd-Fe-B alloy and the manufacturing process. The optimum milling condition was found by investigating the milling media, milling time and ball size. The addition of FeGa was effective to increase the coercivity of the Nd-Fe-B sintered magnet. A remanence of 14.4 kG, a coercivity of 9.4 kOe and a maximum energy product of 47 MGOe were obtained from the sintered magnet.

Breakage and Liberation Characteristics of Iron Ore from Shinyemi Mine by Ball Mill (신예미 광산 철광석의 볼밀 분쇄 및 단체분리 특성 연구)

  • Lee, Donwoo;Kwon, Jihoe;Kim, Kwanho;Cho, Heechan
    • Resources Recycling
    • /
    • v.29 no.3
    • /
    • pp.11-23
    • /
    • 2020
  • This study aims to investigate breakage and liberation characteristics of iron ore from Shinyemi mine, Jeongseon by ball mill. Parameters of breakage functions for three grade samples of iron ore were obtained using single-sized-feed breakage test and back-calculation based on nonlinear programming. The results showed that with the increase in the grade of iron ore, the breakage rate factor decrease whereas the particle size sensitivity decreases. This results from retardation of microcrack-propagation by magnetite grain in the ore. Breakage distribution analysis showed that the breakage mechanism appear to be impact fracture dominant with the increase of grade owing to the stress distribution effect by magnetite grain. Degree of liberation (DOL) increased with the increase in grade and decrease in particle size, respectively. Using the breakage function and size-DOL relationship, a model that can predict time-dependent-DOL is established. When scale-up factors from operating condition are available, the model is expected to be capable of predicting size and DOL with time in actual mining process.

A Novel saccharification method of uncooked concentrated corn starch using an agitated bead reaction system (분쇄마찰매체 함유 반응계를 이용한 무증자 Corn starch의 고농도 당화와 당화액의 조성에 관한 연구)

  • 이용현;조구형
    • Microbiology and Biotechnology Letters
    • /
    • v.14 no.5
    • /
    • pp.399-405
    • /
    • 1986
  • Corn starch was saccharified without cooking in an agitated bead reaction system. Uncooked corn starch was effectively hydrolyzed even at the concentration as high as 39%(w/v). After 24 hours. the extent of saccharification reached at 92%, which corresponds glucose concentration of 425g/L. Fed-batch feeding of starch was more effective than batch feeding for saccharification of uncooked corn starch. The composition of hydrolysated of uncooked starch was analyzed. which was composed of 95% glucose, 0.7% of maltose, and 4.5% of high saccharide, similar with that of cooked starch. The hydrolysate can be successfully utilized for HFCS manufacture. The starch liquefying and saccharifying enzyme was relatively stable even be the physical impact of the attrition-milling media. The enzyme stabilizer, $Ca^{++}$, played an essential role in preventing the enzyme deactivation caused by the physical impact.

  • PDF

Diluted Synthesis of Manocrystalline CeO2 by Mechanical Milling (희석혼합체의 기계적 분쇄에 의한 나노 CeO2의 합성)

  • Lim, Geon-Ja;Kim, Tae-Eun;Lee, Jong-Ho;Lee, Hae-Weon;Rhee, Dong-Joo;Hyun, Sang-Hoon
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.8
    • /
    • pp.764-768
    • /
    • 2002
  • The nanocrystalline $CeO_2$ was synthesized by mechanical milling and subsequent heat-treatment with the mixture of $Ce(OH)_4$ precursor and diluent, NaCl. Using deionized water, the diluent, NaCl, in the mixture has been easily dissolved out. Diffusion barrier was provided by the diluent during heat-treatment, which suppressed not only the coarsening of primary particle but also the agglormeration between the particles. Crystallite and aggregate size of $CeO_2$ depended on the concentration of diluent, temperature and time of heat-treatment; increased with the temperature and time increases. In case the mixture was heat-treated at high than $600^{\circ}C$, however, the crystallite size was saturated near 20 nm, which was supposed to be due to the densification of diluent.

The research about properties of modified low heat slag cement (개질 처리된 저발열 슬래그시멘트 특성에 관한 연구)

  • Kim, Hong-Joo;Kim, Won-Ki;Kim, Hoon-Sang;Lee, Won-Jun;Shin, Jin-Ho
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.677-680
    • /
    • 2008
  • The surface of particles was energetically modified by inter-grinding OPC and BFS in vibration mill for improvement of the early strength and low-heat evolution of concretes. BFS was pre-grinding in ball-mill to 2535(BS2) and 3245 $cm^2/g$(BS3), in blaine surface area. The inter-grinding time in vibration mill was changed from 10 minutes to 30 minutes. And Mixing ration of BFS to OPC was changed in 60, 70, 80%. After inter-grinding, the change of specific surface area, particle size distribution, hydration heat of cement and compressive strength of mortar were measured. As the result of comparison test with LHC, it was found that the mixture and inter-grinding time satisfying the value of over 100% of compressive strength for 7 days and under 170J/g of heat of hydration for 72 hours. and it was confirmed that the possibility of low heat slag cement utilizing blast furnace slag(BS2, BS3) with the low fineness in high volumes.

  • PDF

Influence of Milling Condition on the Phase Formation and Jc of Ag/Bi 2223 Superconducting Tapes (분말의 분쇄조건이 Ag/Bi-2223 초전도 선재의 상전이와 임계전류 밀도에 미치는 영향)

  • Kim, Won-Ju;Yu, Jae;Lee, Hui-Gyun;Hong, Gye-Won
    • Korean Journal of Materials Research
    • /
    • v.7 no.2
    • /
    • pp.140-144
    • /
    • 1997
  • The effects of the particle size of precursor powder on the microstructure and Jc of Ag-sheathed Ri-2223 tapes were investigated. The calcined powder with overall composition of $Bi_{1-89}Pb_{0-41}Sr_{2-01}Ca_{2-23}Cu_{3-03}O_{y}$ was milled for various times using planetary ball mill. The transport property of the tapes were found to depend strongly on the particle size of the precursor powder Enhanced reactivity of the milled powder facilitated the formation of 2223 phase and resulted in an increase of Jc. Excessive milling, however, led to the amorphisation of the powder and degraded the electrical property of the tapes.

  • PDF

A Study on Characteristics of Pulverized Ion Exchange Resins (이온교환수지 분체 특성에 대한 연구)

  • Jaeyong Huh;Gyeongmi Goo;Yongwon Jang;Sanghyeon Kang
    • Membrane Journal
    • /
    • v.34 no.2
    • /
    • pp.132-139
    • /
    • 2024
  • The ion exchange resin used to remove total dissolved solids (TDS) is used by being packed in a column, and sufficient contact time between the ionic material and the ion exchange resin is required during the ion exchange process. In this study, the ion exchange resin that exhibits high TDS reduction even with a short contact time through pulverization of the ion exchange resin was characterized. The optimal size of resin considering flowability was over 100 ㎛. The highest pulverizing yield were obtained that 250~500 ㎛ size and 100~250 ㎛ size were 67.3% and 36.9%, respectively. Also, the highest yield and the pulverizing time of 100~500 ㎛ size was 87.1% and 2 minutes, respectively. Under batch test conditions, the time to reach a removal rate of 95% and 99% for 250~500 ㎛ resins was 1.82 and 1.96 times faster than non-pulverized ion exchange resin, respectively. The 100~250 ㎛ resins showed 15.9 times and 6.18 times faster, respectively. Under the column test, a total of 1.74 g of NaCl was removed by non-pulverized ion exchange resins, 1.83 g of NaCl was removed by 250~500 ㎛ resins and 1.63 g of NaCl was removed by 100 and 250 ㎛ resins. As the size of the resin decreased, the capacity slightly decreased. As a result, it was observed that the pulverized ion exchange resins could be a method of achieving high TDS removal performance under short contact time.

Selective Removal of Arsenic Compounds from the Contaminated Paddy Soil in China Using Froth Flotation Technique (포말부선 기술을 이용한 중국 오염농경지내 비소화합물의 선택적 제거)

  • Lee, Seungwoo;Jeon, Chilsung;Lee, Eunseong;Yoo, Kyungmin;Choi, Junhyun;Kim, Hyunjung
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.7
    • /
    • pp.343-352
    • /
    • 2016
  • Effects of grinding time and chemicals dosage in arsenic removal from contaminated paddy soil in China were investigated using lab scale attrition and froth flotation combining process. Arsenic concentration in the field soil was 76.51 mg/kg, exceeding Korean and Chinese standards, and predominant arsenic compounds fraction in sequential extraction was "residual" (over 80%). After wet sieving, soil with >2 mm and < 0.038 mm showed concentration lower than 'Warning Level' in Korea. Soil with 0.038-0.075 mm, showing the highest concentration, was discarded since it occupied minor weight fraction (10.1%). Thus soil between 0.075 and 2 mm was only used in the combining process. The highest Arsenic concentration in progeny fragments smaller than 0.038 mm reached up to 981.66 mg/kg after 5 min of attrition. Optimal dosage of collector ($C_5H_{11}OCS_2K$) and modifier ($Na_2S$ and $CuSO_4$) in froth flotation process for the selective separation of the chipped progeny particles from the parent fragments were determined both as 200 g/ton. Arsenic removal efficiency in froth flotation process was 38.47% and it was increased to 72.74% in additional flotation process, scavenging. Average arsenic concentration after overall process - wet sieving, attrition and froth flotation - was estimated to 16.45 mg/kg.

Enhancing mechanism of the saccharification of uncooked starch in an agitated bead reaction system (무증자전분의 분쇄마찰매체에 의한 효소당화촉진 Mechanism의 규명)

  • 조구형;이용현
    • Microbiology and Biotechnology Letters
    • /
    • v.14 no.5
    • /
    • pp.407-413
    • /
    • 1986
  • In an agitated bead reaction system, the enzymatic saccharification of uncooked starch was substantially enhanced. The enhancement mechanism was investigated front the view of the structural aspect of starch. The mechanical impact caused by the movement of the attrition-milling media resulted neither the destruction of microcrystalline structure nor the fragmentation of starch granule. instead, the most distinct phenomenon was the swelling of starch granule up to about 2.5 times, and the swelling mechanism was not similar with that caused by cooking. However, in the case of the enzyme addition in the attrition coupled reaction system, the swollen starch was easily fragmented into the large number of small particles by the synergistic action of the enzyme and milling-media. The exposed surface area of the fragmented particles plays the major role in enhancing the saccharification. The saccharification rate was quite different depending on the source of starch, the reason was discussed in terms of the granular structure of uncooked starches.

  • PDF

Analysis of carbonation characteristics on waste concrete (폐콘크리트의 탄산화 특성 분석)

  • Kim, Nam Il;Lee, Jong Tae;Chu, Yong Sik
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.32 no.4
    • /
    • pp.151-158
    • /
    • 2022
  • In this study, the waste concrete sample obtained as various particle size (0~2.36 mm) was carried out the basic measurements and carbonation for analyzing the possibility of its carbonation. It was then investigated some analysis such as crystallization (XRD pattern), microstructure (SEM), and the production of CaCO3 through the ignition loss (TG-DTA). The content of CaCO3 in the waste concrete sample before carbonation was found in 14.51 % and 28.52 % after carbonation in 24 hours. Moreover, the content of CaCO3 carbonated in 24 hours with fine grinded waste concrete sample was 32.73 %. The carbonation of the waste concrete sample was rapidly performed up to 6 hours, but gradually increased from 12 to 24 hours. Especially, the amount of CaCO3 between 12 and 24 hours was only produced 2.32 %. The calcite-shaped CaCO3 crystals after carbonation of the waste concrete sample were found in microstructure and their peaks were strongly detected on XRD pattern.