DOI QR코드

DOI QR Code

A Study on Characteristics of Pulverized Ion Exchange Resins

이온교환수지 분체 특성에 대한 연구

  • Jaeyong Huh (Department of Nano, Chemical and Biological Engineering, Seokyeong University) ;
  • Gyeongmi Goo (Department of Nano, Chemical and Biological Engineering, Seokyeong University) ;
  • Yongwon Jang (Department of Nano, Chemical and Biological Engineering, Seokyeong University) ;
  • Sanghyeon Kang (Department of Nano, Chemical and Biological Engineering, Seokyeong University)
  • 허재용 (서경대학교 나노화학생명공학과) ;
  • 구경미 (서경대학교 나노화학생명공학과) ;
  • 장용원 (서경대학교 나노화학생명공학과) ;
  • 강상현 (서경대학교 나노화학생명공학과)
  • Received : 2023.12.25
  • Accepted : 2024.02.21
  • Published : 2024.04.30

Abstract

The ion exchange resin used to remove total dissolved solids (TDS) is used by being packed in a column, and sufficient contact time between the ionic material and the ion exchange resin is required during the ion exchange process. In this study, the ion exchange resin that exhibits high TDS reduction even with a short contact time through pulverization of the ion exchange resin was characterized. The optimal size of resin considering flowability was over 100 ㎛. The highest pulverizing yield were obtained that 250~500 ㎛ size and 100~250 ㎛ size were 67.3% and 36.9%, respectively. Also, the highest yield and the pulverizing time of 100~500 ㎛ size was 87.1% and 2 minutes, respectively. Under batch test conditions, the time to reach a removal rate of 95% and 99% for 250~500 ㎛ resins was 1.82 and 1.96 times faster than non-pulverized ion exchange resin, respectively. The 100~250 ㎛ resins showed 15.9 times and 6.18 times faster, respectively. Under the column test, a total of 1.74 g of NaCl was removed by non-pulverized ion exchange resins, 1.83 g of NaCl was removed by 250~500 ㎛ resins and 1.63 g of NaCl was removed by 100 and 250 ㎛ resins. As the size of the resin decreased, the capacity slightly decreased. As a result, it was observed that the pulverized ion exchange resins could be a method of achieving high TDS removal performance under short contact time.

Total dissolved solids (TDS) 제거에 이용되는 이온교환수지는 컬럼에 충진시켜 사용하게 되는데, 이온교환 과정에서 이온성 물질과 이온교환수지의 충분한 접촉시간을 필요로 한다. 본 연구에서는 이온교환수지의 분체화를 통하여 짧은 접촉시간으로도 높은 TDS 제거 성능을 보이는 이온교환수지의 특성을 연구하였다. 흐름성 등을 고려한 분체의 최적 크기는 100 ㎛ 이상임을 확인하였고, 250~500 ㎛d와 100~250 ㎛ 크기의 최대 분쇄 수율은 각각 67.3%와 36.9%였다. 또한 100~500 ㎛ 크기의 분쇄 수율은 분쇄 시간 2분에서 87.1%로 나타났다. 회분식(batch) 실험 조건에서 250~500 ㎛ 크기의 분체가 95%와 99%의 제거율에 도달하는 시간은 분쇄 전(non-pulverized) 이온교환수지에 비해 각각 1.82배와 1.96배 더 빨랐다. 100~250 ㎛ 크기의 분체는 각각 15.9배와 6.18배 더 빨랐다. 컬럼 테스트의 경우 분쇄 전 이온교환수지는 총 1.74 g, 250~500 ㎛ 크기의 분체는 1.83 g, 100~250 ㎛ 크기의 분체는 1.63 g의 NaCl을 제거하였다. 분체의 크기가 작아질수록 용량(capacity)이 약간 감소한 것으로 나타났다. 결과적으로 분체화된 이온교환수지를 사용하는 것이 접촉시간 대비 높은 TDS 제거 성능을 얻을 수 있는 방법임을 확인하였다.

Keywords

Acknowledgement

본 연구는 산업통상자원부(과제번호: 20019441)의 지원을 받아 수행되었으며 이에 감사드립니다.

References

  1. R. Parnamae, S. Mareev, V. Nikonenko, S. Melnikov, N. Sheldeshov, V. Zabolotskii, H. V. M. Hamelers, and M. Tedesco, "Bipolar membranes: A review on principles, latest developments, and applications", J. Membr. Sci., 617, 118538 (2021).
  2. J. Kucera, "Desalination: Water from water", pp. 503-520, John Wiley & Sons, Hoboken, NJ, USA (2014).
  3. F. Zhang, M. Chen, Y. Zhang, and R. J. Zeng, "Microbial desalination cells with ion exchange resin packed to enhance desalination at low salt concentration", J. Membr. Sci., 417, 28-33 (2012).
  4. H. Paudyal, K. Inoue, H. Kawakita, K. Ohto, H. Kamata, and S. Alam, "Removal of fluoride by effectively using spent cation exchange resin", J. Mater. Cycles Waste Manag., 20, 975-984 (2018). https://doi.org/10.1007/s10163-017-0659-4
  5. M. Yoshida and K. Mine, "Flocculant, filter, and waste liquid treating method", US Patent 11,174,179, November 16 (2021).
  6. K. H. Lee, B. M. Kil, C. H. Ryu, and G. J. Hwang, "Removal of alkali metal ion and chlorine ion using the ion exchange resin", Membr. J., 30, 276-281 (2020). https://doi.org/10.14579/MEMBRANE_JOURNAL.2020.30.4.276
  7. H. J. Jeong, H. K. Ahn, and I. H. Rhee, "A study on ion exchange characteristics with arrangement of ion exchange column", Proc. KAIS Fall Conf., pp. 596-598, Korea (2006).
  8. H. J. Yoon and H. J. Jeong, "A study on ion exchange characteristics with composition and concentration of electrolyte, ratio of ion exchange resin", J. Korea Acad.-Ind. Coop. Soc., 7, 727-732 (2006).
  9. H. J. Jeong, H. K. Ahn, and I. H. Lee, "A study on ion exchange characteristics with composition and concentration of solution", Proc. KAIS Fall Conf., pp. 599-601, Korea (2006).
  10. P. A. Yarnell, "Encyclopedia of separation science", pp. 3973-3981, Academic Press, Cambridge, MA, USA (2000).
  11. K. Fang, F. Peng, H. Gong, H. Zhang, and K. Wang, "Ammonia removal from low-strength municipal wastewater by powdered resin combined with simultaneous recovery as struvite", Front. Environ. Sci. Eng., 15, 1-10 (2021). https://doi.org/10.1007/s11783-020-1293-2
  12. M. R. Stouffer, "Composite ion exchange media for liquid filtration systems", US Patent 10,576,466, March 3 (2020).
  13. D. H. Kim, Y. E. Choi, J. S. Park, and M. S. Kang, "Development and application of cation-exchange membranes including chelating resin for efficient heavy-metal ion removal", Membr. J., 27, 129-137 (2017). https://doi.org/10.14579/MEMBRANE_JOURNAL.2017.27.2.129
  14. J. I. Cho, G. T. Kim, and Y. C. Ahn, "A study on characteristics of filters for domestic household water purifier", J. Adv. Mar. Eng. Technol., 37, 541-547 (2013). https://doi.org/10.5916/jkosme.2013.37.5.541
  15. S. K. Kwun, M. J. Yu, T. M. Jung, and M. S. Kim, "Nitrate removal in rural groundwater using ion exchange resin", Korean J. Environ. Agric., 16, 193-198 (1997).
  16. http://www.iontec.co.kr/main/pds_view.asp?num=149&paper=1, May 27 (2008).
  17. https://www.samyangtrilite.co.kr/kr/support/case-study?keyword=%EC%9D%B4%EC%98%A8%EA%B5%90%ED%99%98%EC%88%98%EC%A7%80%20%EC%8B%A4%ED%97%98%EB%B0%A9%EB%B2%95.