• Title/Summary/Keyword: 분산학습제어

검색결과 42건 처리시간 0.019초

6축다관절 로봇 동력분산학습제어

  • 이수철
    • 한국산업정보학회논문지
    • /
    • 제3권1호
    • /
    • pp.183-191
    • /
    • 1998
  • 다양한 산업분야의 생산공장에서 주로 활용되고 있는 6축 수직다관절로보트는 대부분 단순반복운동을 하고 있다. 단순반복중 point-to-point제어보다 품질을 요하는 tracking-to-trajectory 제어를 위한 분산학습제어에 대하여 연구하고자 한다. 관련 학습제어기법으로는 선형누적형기법과 간접적응기법이 있다. 두기법의 차이는 시스템 정보의 유무이며, 시스템의 주어진 상황에 따라 두 기법중 하나를 선택할 수 있다. 간접적응형 기법은 zero tracking error를 보장받기 위해서 보다 많은 반복을 요하는 경비를 부담하여야 한다.

6축다관절 로봇 동력분산학습제어

  • 이수철
    • 한국산업정보학회:학술대회논문집
    • /
    • 한국산업정보학회 1998년도 춘계공동학술대회 발표논문집 IMF시대의정보화 추진전략
    • /
    • pp.125-128
    • /
    • 1998
  • 다양한 산업분야의 생산공장에서 주로 활용되고 있는 6축 수직다관절보트은 대부분 단순반복운동을 하고 있다. 단순반복중 point-to-point제어보다 품질을 요하는 tracking -to-trajectory제어를 위한 분산학습제어에 대하여 연구하고자 한다. 관련 학습제어기법으로는 선형누적기법과 간접적응기법이 있다. 두 기법의 차이는 시스템의 정보의 유무이며 시스템의 주어진상황에 따라 두 기법중 하나를 선택할 수 있다. 간접적응형 기법은 zero tracking error를 보장받기 위해서 보다 많은 반복을 요하는 경비를 부담하여야 한다.

수직다물체시스템의 오차파형전달방식 간접적응형 분산학습제어 (Indirect Adaptive Decentralized Learning Control based Error Wave Propagation of the Vertical Multiple Dynamic Systems)

  • 이수철
    • 한국산업정보학회:학술대회논문집
    • /
    • 한국산업정보학회 2006년도 춘계 국제학술대회 논문집
    • /
    • pp.211-217
    • /
    • 2006
  • 반복학습제어는 특정목적 궤도의 반복작업을 수행하는 정밀도를 개선하는 제어기를 개발하는 기술이다. 기존 연구에서는 수직다물체의 반복정밀도를 개선하기 위하여 누적학습제어와 적응제어 기법을 한 반복영역에서 동시에 실시하는 기법을 개발하였다. 당초 이 기술은 생산조립라인의 산업용 로봇에서 발생하는 반복정밀도를 개선하기 위해 개발하였으며, 특히, 분산학습기법은 산업용 로봇에서 발생하는 실질적 제어 방식에 유효한 기법이다. 본 논문에서 개발한 제어기술은 한 반복영역의 모든 시간대의 입출력 정보를 동시에 학습하기 보다는 매 시간대의 입출력 정보를 각 시간대 마다 충분히 학습하고 다음 시간대의 정보를 학습하는 것이다. 본 논문에서 개발한 기술을 산업용 로봇과 의료기기에 적용하면 수직다물체의 정밀도 품질보증 확보에 큰 기여를 하게 된다.

  • PDF

오차파형전달방식 간접적응형 분산학습제어 알고리즘을 적용한 수직다물체시스템의 반복정밀도 보증 (Quality Assurance of Repeatability for the Vertical Multiple Dynamic Systems in Indirect Adaptive Decentralized Learning Control based Error wave Propagation)

  • 이수철
    • 한국산업정보학회논문지
    • /
    • 제11권2호
    • /
    • pp.40-47
    • /
    • 2006
  • 반복학습제어는 특정목적 궤도의 반복작업을 수행하는 정밀도를 개선하는 제어기를 개발하는 기술이다. 기존 연구에서는 수직다물체의 반복정밀도를 개선하기 위하여 누적학습제어와 적응제어 기법을 한 반복영역에서 동시에 실시하는 기법을 개발하였다. 당초 이 기술은 생산조립라인의 산업용 로봇에서 발생하는 반복정밀도를 개선하기 위해 개발하였으며, 특히, 분산학습기법은 산업용 로봇에서 발생하는 실질적 제어 방식에 유효한 기법이다 본 논문에서 개발한 제어기술은 한 반복영역의 모든 시간대의 입출력 정보를 동시에 학습하기 보다는 매 시간대의 입출력 정보를 각 시간대 마다 충분히 학습하고 다음 시간대의 정보를 학습하는 것이다. 본 논문에서 개발한 기술을 산업용 로봇과 의료기기에 적용하면 수직다물체의 정밀도 품질보증 확보에 큰 기여를 하게 된다.

  • PDF

소뇌모델 선형조합 신경망의 구조 및 학습기능 연구(I) -분석 및 학습 알고리즘 개발- (On Learning and Structure of Cerebellum Model Linear Associator Network(I) -Analysis & Development of Learning Algorithm-)

  • 황헌;백풍기
    • Journal of Biosystems Engineering
    • /
    • 제15권3호
    • /
    • pp.186-198
    • /
    • 1990
  • 인간 소뇌의 구조와 기능을 간략하게 수학적으로 모델링하여 입력에 따른 시스템의 적정 출력을 학습에 의한 적응 제어 방식으로 추출해 내는 소뇌모델 대수제어기(CMAC : Cerebellar Model Arithmetic Controller)가 제안되었다. 본 논문에서는 연구개발된 기존 신경회로망과의 비교 분석에 의거하여, 소뇌모델 대수제어기 대신 네트의 특성에 따라 소뇌모델 선형조합 신경망(CMLAN : Cerebellum Model Linear Associator Network)이라 하였다. 소뇌모델 선형조합 신경망은 시스템의 제어 함수치를 결정하는 데 있어, 기존의 제어방식이 시스템의 모델링을 기초로 하여 알고리즘에 의한 수치해석적 또는 분석적 기법으로 모델 해를 산출하는 것과 달리, 학습을 통하여 저장되는 분산기억 소자들의 함수치를 선형적으로 조합함으로써 시스템의 입출력을 결정한다. 분산기억 소자로의 함수치 산정 및 저장은 소뇌모델 선형조합 신경망이 갖는 고유의 구조적 상태공간 매핑(State Space Mapping)과 델타규칙(Delta Rule)에 의거한 시스템의 입출력 상태함수의 학습으로써 수행된다. 본 논문을 통하여 소뇌모델 선형조합신경망의 구조적 특성, 학습 성질과 상태공간 설정 및 시스템의 수렴성을 규명하였다. 또한 기존의 최대 편차수정 학습 알고리즘이 갖는 비능률성 및 적용 제한성을 극복한 효율적 학습 알고리즘들을 제시하였다. 언급한 신경망의 특성 및 제안된 학습 알고리즘들의 능률성을 다양한 학습이득(Learning Gain)하에서 비선형 함수를 컴퓨터로 모의 시험하여 예시하였다.

  • PDF

복합구조물의 선형반복학습제어 정밀도 연구 (Precision of Iterative Learning Control for the Multiple Dynamic Subsystems)

  • 이수철
    • 한국정밀공학회지
    • /
    • 제18권3호
    • /
    • pp.131-142
    • /
    • 2001
  • 다양한 산업체에서 반복적인 특정업무를 수행하는 경우가 흔히 발생한다. 반복되는 오차의 경험치를 근거로 주어진 작업을 추진하는 과정에서 이들 업무의 정밀도제고를 추구함으로써 갖는 성능개선은 사업장의 품질관리와 직결된다. 학습제어의 본래 적용동기는 생산조립라인에 투입되어 반복적인 일을 수행하는 산업로봇의 정밀도 제고이다. 본 논문에서 분산이산시형시스템에서 출발하였으며, 이를 산업용로봇에 적용하기 위하여 수학적으로 모델링한 모의실험을 통하여 알고리즘의 안정성과 반복오차를 줄여가는 과정을 보여 주었다. 입출력정보가 상호간섭 하는 산업용로봇과 같은 복합구조물에서도 모든 시스템(링크)의 정밀도를 만족함을 보여 줌으로써 복합구조물에서 선형반복학습제어의 안정성을 증명하였다.

  • PDF

다중 에이전트 시스템의 컨센서스를 위한 슬라이딩 기법 강화학습 (A slide reinforcement learning for the consensus of a multi-agents system)

  • 양장훈
    • 한국항행학회논문지
    • /
    • 제26권4호
    • /
    • pp.226-234
    • /
    • 2022
  • 자율주행체와 네트워크기반 제어 기술의 발달에 따라서, 하나의 에이전트를 제어하는 것을 넘어서 다수의 이동체를 분산 제어하는데 사용 가능한 다중 에이전트의 컨센서스 제어에 대한 관심과 연구가 증가하고 있다. 컨센서스 제어는 분산형 제어이기 때문에, 정보 교환은 실제 시스템에서 지연을 가지게 된다. 또한, 시스템에 대한 모델을 정확히 수식적으로 표현하는데 있어서 한계를 갖는다. 이런 한계를 극복하는 방법 중에 하나로서 강화 학습 기반 컨센서스 알고리즘이 개발되었지만, 불확실성이 큰 환경에서 느린 수렴을 갖는 경우가 자주 발생하는 특징을 보이고 있다. 따라서, 이 논문에서는 불확실성에 강인한 특성을 갖는 슬라이딩 모드제어를 강화학습과 결합한 슬라이딩 강화학습 알고리즘을 제안한다. 제안 알고리즘은 기존의 강화학습 기반 컨센서스 알고리즘의 제어 신호에 슬라이딩 모드 제어 구조를 추가하고, 시스템의 상태 정보를 슬라이딩 변수를 추가하여 확장한다. 모의실험 결과 다양한 시변 지연과 왜란에 대한 정보가 주어지지 않았을 때에 슬라이딩 강화학습 알고리즘은 모델기반의 알고리즘과 유사한 성능을 보이면서, 기존의 강화학습에 비해서 안정적이면서 우수한 성능을 보여준다.

실시간 차량 밀도에 대응하는 심층강화학습 기반 C-V2X 분산혼잡제어 (Deep Reinforcement Learning-Based C-V2X Distributed Congestion Control for Real-Time Vehicle Density Response)

  • 전병철;양우열;조한신
    • 전기전자학회논문지
    • /
    • 제27권4호
    • /
    • pp.379-385
    • /
    • 2023
  • 분산혼잡제어는 높은 밀도의 차량 네트워크에서 채널 혼잡을 완화하고, 통신 성능을 개선하는 기술이다. 기존 분산혼잡제어 기술은 quality of service(QoS) 요구사항을 고려하지 않은 채 채널 혼잡을 줄이는 방향으로 동작한다. 이러한 분산혼잡제어 알고리즘 설계는 과도한 DCC 동작으로 인하여 다른 QoS를 저하시킬 수 있다. 이와 같은 문제를 해결하기 위해 심층강화학습 기반 QoS 적응형 DCC 알고리즘을 제안한다. 시뮬레이션은 준 실환경 시뮬레이터를 기반으로 동적인 차량 밀도를 생성하여 평가하였으며, 시뮬레이션 결과 기존 DCC 알고리즘 보다 목표 QoS에 더 근접한 결과를 확인하였다.

분산학습알고리듬의 이론적 분석 (Theoretical Analysis on the Variance Learning Algorithm)

  • 조영빈;권대갑
    • 한국정밀공학회지
    • /
    • 제14권10호
    • /
    • pp.141-150
    • /
    • 1997
  • 분산은 확률모델을 표현하는 유용한 변수중 하나이다. 입력변수에 대한 함수로 표현되는 조건부 분산을 학습하는 신경회로망에 대한 많은 연구가 있어왔다. VALEAN이라는 신경회로망 역시 이러한 많은 연구중 하나인데 이것은 기본적으로 feedforward 다층 퍼셉트론 구조를 가지며 새롭게 제시된 에너지 함수를 사용하고 있다. 이 논문에서는 이 에너지 모델에 의해 결정되는 피드백에러(델타)가 신경망의 transient, steady state에서 미치는 영향을 다루었다. 과도 상태 분석에서는 델타와 수렴성, 안정성에 관한 내용을 다루고 모의 실험을 하였으며 정상 상태 분석에서는 신경회로망의 정상상태 에러의 크기와 델타의 크기사이의 상관관계에 대하여 다루었다. 학습 알고 리듬이 확률적이므로 정상상태 역시 확률적인 상태를 나타낸다. 따라서 델타의 크기에 따른 정상 상태 에러의 최대치는 확률적인 모델을 가지게 된다. 여기서는 이 확률 관계를 분석적으로 규명하고 이에 따라 원하는 신뢰도로 정상 상태 에러를 제어하기 위해 필요한 델타의 크기를 예측할 수 있는 이론적 배경을 마련하게 된다.

  • PDF

수직다물체시스템의 간접적응형 분산학습제어에 관한 연구 (A Study on Indirect Adaptive Decentralized Learning Control of the Vertical Multiple Dynamic System)

  • 이수철;박석순;이재원
    • 한국정밀공학회지
    • /
    • 제22권4호
    • /
    • pp.92-98
    • /
    • 2005
  • The learning control develops controllers that learn to improve their performance at executing a given task, based on experience performing this specific task. In a previous work, the authors presented an iterative precision of linear decentralized learning control based on p-integrated learning method for the vertical dynamic multiple systems. This paper develops an indirect decentralized teaming control based on adaptive control method. The original motivation of the teaming control field was loaming in robots doing repetitive tasks such as on an assembly line. This paper starts with decentralized discrete time systems, and progresses to the robot application, modeling the robot as a time varying linear system in the neighborhood of the nominal trajectory, and using the usual robot controllers that are decentralized, treating each link as if it is independent of any coupling with other links. Some techniques will show up in the numerical simulation for vertical dynamic robot. The methods of learning system are shown up for the iterative precision of each link.