다양한 산업분야의 생산공장에서 주로 활용되고 있는 6축 수직다관절로보트는 대부분 단순반복운동을 하고 있다. 단순반복중 point-to-point제어보다 품질을 요하는 tracking-to-trajectory 제어를 위한 분산학습제어에 대하여 연구하고자 한다. 관련 학습제어기법으로는 선형누적형기법과 간접적응기법이 있다. 두기법의 차이는 시스템 정보의 유무이며, 시스템의 주어진 상황에 따라 두 기법중 하나를 선택할 수 있다. 간접적응형 기법은 zero tracking error를 보장받기 위해서 보다 많은 반복을 요하는 경비를 부담하여야 한다.
다양한 산업분야의 생산공장에서 주로 활용되고 있는 6축 수직다관절보트은 대부분 단순반복운동을 하고 있다. 단순반복중 point-to-point제어보다 품질을 요하는 tracking -to-trajectory제어를 위한 분산학습제어에 대하여 연구하고자 한다. 관련 학습제어기법으로는 선형누적기법과 간접적응기법이 있다. 두 기법의 차이는 시스템의 정보의 유무이며 시스템의 주어진상황에 따라 두 기법중 하나를 선택할 수 있다. 간접적응형 기법은 zero tracking error를 보장받기 위해서 보다 많은 반복을 요하는 경비를 부담하여야 한다.
반복학습제어는 특정목적 궤도의 반복작업을 수행하는 정밀도를 개선하는 제어기를 개발하는 기술이다. 기존 연구에서는 수직다물체의 반복정밀도를 개선하기 위하여 누적학습제어와 적응제어 기법을 한 반복영역에서 동시에 실시하는 기법을 개발하였다. 당초 이 기술은 생산조립라인의 산업용 로봇에서 발생하는 반복정밀도를 개선하기 위해 개발하였으며, 특히, 분산학습기법은 산업용 로봇에서 발생하는 실질적 제어 방식에 유효한 기법이다. 본 논문에서 개발한 제어기술은 한 반복영역의 모든 시간대의 입출력 정보를 동시에 학습하기 보다는 매 시간대의 입출력 정보를 각 시간대 마다 충분히 학습하고 다음 시간대의 정보를 학습하는 것이다. 본 논문에서 개발한 기술을 산업용 로봇과 의료기기에 적용하면 수직다물체의 정밀도 품질보증 확보에 큰 기여를 하게 된다.
반복학습제어는 특정목적 궤도의 반복작업을 수행하는 정밀도를 개선하는 제어기를 개발하는 기술이다. 기존 연구에서는 수직다물체의 반복정밀도를 개선하기 위하여 누적학습제어와 적응제어 기법을 한 반복영역에서 동시에 실시하는 기법을 개발하였다. 당초 이 기술은 생산조립라인의 산업용 로봇에서 발생하는 반복정밀도를 개선하기 위해 개발하였으며, 특히, 분산학습기법은 산업용 로봇에서 발생하는 실질적 제어 방식에 유효한 기법이다 본 논문에서 개발한 제어기술은 한 반복영역의 모든 시간대의 입출력 정보를 동시에 학습하기 보다는 매 시간대의 입출력 정보를 각 시간대 마다 충분히 학습하고 다음 시간대의 정보를 학습하는 것이다. 본 논문에서 개발한 기술을 산업용 로봇과 의료기기에 적용하면 수직다물체의 정밀도 품질보증 확보에 큰 기여를 하게 된다.
인간 소뇌의 구조와 기능을 간략하게 수학적으로 모델링하여 입력에 따른 시스템의 적정 출력을 학습에 의한 적응 제어 방식으로 추출해 내는 소뇌모델 대수제어기(CMAC : Cerebellar Model Arithmetic Controller)가 제안되었다. 본 논문에서는 연구개발된 기존 신경회로망과의 비교 분석에 의거하여, 소뇌모델 대수제어기 대신 네트의 특성에 따라 소뇌모델 선형조합 신경망(CMLAN : Cerebellum Model Linear Associator Network)이라 하였다. 소뇌모델 선형조합 신경망은 시스템의 제어 함수치를 결정하는 데 있어, 기존의 제어방식이 시스템의 모델링을 기초로 하여 알고리즘에 의한 수치해석적 또는 분석적 기법으로 모델 해를 산출하는 것과 달리, 학습을 통하여 저장되는 분산기억 소자들의 함수치를 선형적으로 조합함으로써 시스템의 입출력을 결정한다. 분산기억 소자로의 함수치 산정 및 저장은 소뇌모델 선형조합 신경망이 갖는 고유의 구조적 상태공간 매핑(State Space Mapping)과 델타규칙(Delta Rule)에 의거한 시스템의 입출력 상태함수의 학습으로써 수행된다. 본 논문을 통하여 소뇌모델 선형조합신경망의 구조적 특성, 학습 성질과 상태공간 설정 및 시스템의 수렴성을 규명하였다. 또한 기존의 최대 편차수정 학습 알고리즘이 갖는 비능률성 및 적용 제한성을 극복한 효율적 학습 알고리즘들을 제시하였다. 언급한 신경망의 특성 및 제안된 학습 알고리즘들의 능률성을 다양한 학습이득(Learning Gain)하에서 비선형 함수를 컴퓨터로 모의 시험하여 예시하였다.
다양한 산업체에서 반복적인 특정업무를 수행하는 경우가 흔히 발생한다. 반복되는 오차의 경험치를 근거로 주어진 작업을 추진하는 과정에서 이들 업무의 정밀도제고를 추구함으로써 갖는 성능개선은 사업장의 품질관리와 직결된다. 학습제어의 본래 적용동기는 생산조립라인에 투입되어 반복적인 일을 수행하는 산업로봇의 정밀도 제고이다. 본 논문에서 분산이산시형시스템에서 출발하였으며, 이를 산업용로봇에 적용하기 위하여 수학적으로 모델링한 모의실험을 통하여 알고리즘의 안정성과 반복오차를 줄여가는 과정을 보여 주었다. 입출력정보가 상호간섭 하는 산업용로봇과 같은 복합구조물에서도 모든 시스템(링크)의 정밀도를 만족함을 보여 줌으로써 복합구조물에서 선형반복학습제어의 안정성을 증명하였다.
자율주행체와 네트워크기반 제어 기술의 발달에 따라서, 하나의 에이전트를 제어하는 것을 넘어서 다수의 이동체를 분산 제어하는데 사용 가능한 다중 에이전트의 컨센서스 제어에 대한 관심과 연구가 증가하고 있다. 컨센서스 제어는 분산형 제어이기 때문에, 정보 교환은 실제 시스템에서 지연을 가지게 된다. 또한, 시스템에 대한 모델을 정확히 수식적으로 표현하는데 있어서 한계를 갖는다. 이런 한계를 극복하는 방법 중에 하나로서 강화 학습 기반 컨센서스 알고리즘이 개발되었지만, 불확실성이 큰 환경에서 느린 수렴을 갖는 경우가 자주 발생하는 특징을 보이고 있다. 따라서, 이 논문에서는 불확실성에 강인한 특성을 갖는 슬라이딩 모드제어를 강화학습과 결합한 슬라이딩 강화학습 알고리즘을 제안한다. 제안 알고리즘은 기존의 강화학습 기반 컨센서스 알고리즘의 제어 신호에 슬라이딩 모드 제어 구조를 추가하고, 시스템의 상태 정보를 슬라이딩 변수를 추가하여 확장한다. 모의실험 결과 다양한 시변 지연과 왜란에 대한 정보가 주어지지 않았을 때에 슬라이딩 강화학습 알고리즘은 모델기반의 알고리즘과 유사한 성능을 보이면서, 기존의 강화학습에 비해서 안정적이면서 우수한 성능을 보여준다.
분산혼잡제어는 높은 밀도의 차량 네트워크에서 채널 혼잡을 완화하고, 통신 성능을 개선하는 기술이다. 기존 분산혼잡제어 기술은 quality of service(QoS) 요구사항을 고려하지 않은 채 채널 혼잡을 줄이는 방향으로 동작한다. 이러한 분산혼잡제어 알고리즘 설계는 과도한 DCC 동작으로 인하여 다른 QoS를 저하시킬 수 있다. 이와 같은 문제를 해결하기 위해 심층강화학습 기반 QoS 적응형 DCC 알고리즘을 제안한다. 시뮬레이션은 준 실환경 시뮬레이터를 기반으로 동적인 차량 밀도를 생성하여 평가하였으며, 시뮬레이션 결과 기존 DCC 알고리즘 보다 목표 QoS에 더 근접한 결과를 확인하였다.
분산은 확률모델을 표현하는 유용한 변수중 하나이다. 입력변수에 대한 함수로 표현되는 조건부 분산을 학습하는 신경회로망에 대한 많은 연구가 있어왔다. VALEAN이라는 신경회로망 역시 이러한 많은 연구중 하나인데 이것은 기본적으로 feedforward 다층 퍼셉트론 구조를 가지며 새롭게 제시된 에너지 함수를 사용하고 있다. 이 논문에서는 이 에너지 모델에 의해 결정되는 피드백에러(델타)가 신경망의 transient, steady state에서 미치는 영향을 다루었다. 과도 상태 분석에서는 델타와 수렴성, 안정성에 관한 내용을 다루고 모의 실험을 하였으며 정상 상태 분석에서는 신경회로망의 정상상태 에러의 크기와 델타의 크기사이의 상관관계에 대하여 다루었다. 학습 알고 리듬이 확률적이므로 정상상태 역시 확률적인 상태를 나타낸다. 따라서 델타의 크기에 따른 정상 상태 에러의 최대치는 확률적인 모델을 가지게 된다. 여기서는 이 확률 관계를 분석적으로 규명하고 이에 따라 원하는 신뢰도로 정상 상태 에러를 제어하기 위해 필요한 델타의 크기를 예측할 수 있는 이론적 배경을 마련하게 된다.
The learning control develops controllers that learn to improve their performance at executing a given task, based on experience performing this specific task. In a previous work, the authors presented an iterative precision of linear decentralized learning control based on p-integrated learning method for the vertical dynamic multiple systems. This paper develops an indirect decentralized teaming control based on adaptive control method. The original motivation of the teaming control field was loaming in robots doing repetitive tasks such as on an assembly line. This paper starts with decentralized discrete time systems, and progresses to the robot application, modeling the robot as a time varying linear system in the neighborhood of the nominal trajectory, and using the usual robot controllers that are decentralized, treating each link as if it is independent of any coupling with other links. Some techniques will show up in the numerical simulation for vertical dynamic robot. The methods of learning system are shown up for the iterative precision of each link.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.