Quality Assurance of Repeatability for the Vertical Multiple Dynamic Systems in Indirect Adaptive Decentralized Learning Control based Error wave Propagation

오차파형전달방식 간접적응형 분산학습제어 알고리즘을 적용한 수직다물체시스템의 반복정밀도 보증

  • 이수철 (대구대학교 공과대학 자동차산업기계공학부)
  • Published : 2006.06.01

Abstract

The learning control develops controllers that learn to improve their performance at executing a given task, based on experience performing this specific task. In a previous work the authors presented an iterative precision of linear decentralized learning control based on p-integrated teaming method for the vertical dynamic multiple systems. This paper develops an indirect decentralized learning control based on adaptive control method. The original motivation of the loaming control field was learning in robots doing repetitive tasks such as on a]1 assembly line. This paper starts with decentralized discrete time systems, and progresses to the robot application, modeling the robot as a time varying linear system in the neighborhood of the nominal trajectory, and using the usual robot controllers that are decentralized, treating each link as if it is independent of any coupling with other links. Error wave propagation method will show up in the numerical simulation for five-bar linkage as a vertical dynamic robot. The methods of learning system are shown up for the iterative precision of each link at each time step in repetition domain. Those can be helped to apply to the vertical multiple dynamic systems for precision quality assurance in the industrial robots and medical equipments.

반복학습제어는 특정목적 궤도의 반복작업을 수행하는 정밀도를 개선하는 제어기를 개발하는 기술이다. 기존 연구에서는 수직다물체의 반복정밀도를 개선하기 위하여 누적학습제어와 적응제어 기법을 한 반복영역에서 동시에 실시하는 기법을 개발하였다. 당초 이 기술은 생산조립라인의 산업용 로봇에서 발생하는 반복정밀도를 개선하기 위해 개발하였으며, 특히, 분산학습기법은 산업용 로봇에서 발생하는 실질적 제어 방식에 유효한 기법이다 본 논문에서 개발한 제어기술은 한 반복영역의 모든 시간대의 입출력 정보를 동시에 학습하기 보다는 매 시간대의 입출력 정보를 각 시간대 마다 충분히 학습하고 다음 시간대의 정보를 학습하는 것이다. 본 논문에서 개발한 기술을 산업용 로봇과 의료기기에 적용하면 수직다물체의 정밀도 품질보증 확보에 큰 기여를 하게 된다.

Keywords