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1. INTRODUCTION multilayer feed-forward neural networks learn a

particular function. In most cases, functions

Many researcher showed that feedforward mul- approximated by back-propagation algorithm rep-

tileyer perceptron can be used to approximate any resent deterministic relationships between input
continuous function.™® Learning algorithms of and output variables.

multilayer perceptron have been studied for this When the relations between input and output

purpose. Among them, the back-propagation algo- variables are not only deterministic but also sto-

rithm, what is called the generalized delta rule, is chastic, variance may be one of the useful para-

ne of the most important methods to make meter to estimate degree of uncertainty caused by
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stochastic relation. Variance estimation is very
simple, when its value is constant all over the
input domain. It is not simple, however, when the
variance is a function of input variables. Donald
F. Specht® presented a review of two classifica-
tion method for probability density functions.
Weigend™ developed variance learning a.gorithm
for multilayer perceptron using maximurn likeli-
hood concept. William® extended its learning
algorithm to cover multi-dimensional case for
multilayer perceptron.

VALEAN (VAriance LEArning Neural natwork),
which was named and proposed by Young-Bin
Cho, is one of the neural networks for this pur-
pose.® Its structure and learning algorithm are
basically feedforward multilayer perceptron and
stochastic version of error back propagation
respectively. Instance feedback error and iterative
variance estimation technique were newly defined
and developed. That paper showed convergence of
the learning algorithm on the assumption that
instance feedback error is sufficiently small.

Relationships of instance feedback error to tran-
sient and steady state of VALEAN are presented
in this paper., where the steady state is defined
by time duration when any probability of neural
network output are independent of time transla-
tions and the transient state is defined by time
duration that is not the steady state. In transient
state analysis, relations of feedback error to con-
vergence and learning stability are studied and
computer simulation examples are utilized for the
demonstration. In steady state analysis, proba-
bilistic relations of feedback error magnitude to
steady state error bound are studied for the eval-
uation of relative error between true variance and
estimated variance made by VALEAN.

2. LEARNING ALGORITHM of VALEAN

In this section, learning algorithm of VALEAN"
will be summarized for the introduction. Stochas-
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tic relationship y.(x)may be assumed to be
described by the gaussian density function with
mean of zero

1 y2
()= exp| ——> )
FO N2m -0, (x) P 2062(x)
where oZ(x) is the variance of stochastic rela-
tionship, y,(x)and it is the function of input vari-
able x. The iterative variance estimation tech-
nique can be used as shown in equation (2).

(2

where o) (x)is the variance estimated by the
neural network and Aoj,(x) is the correction

oy () =04 () + Aoy (x)

term at the learning time of  respectively. In case
of error back propagation, correction term
Ac)(x)can be regarded as instance feedback
error at the learning time .
lim o}, (x) = 0,(x) 3)
t—yo0 .
Equation (3) can be guaranteed when the cor-
rection term A0y (x)s calculated by the following
equations (4.a), (4.b) and (5). Equation (4.a)
and {4.b) determine the sign of AcGH(x)and

Equation (5) determine the magnitude of
AG',(x) .

. 3y?
PO 1y,) = exp (——=2) (4.0)
20y
3 2
PO 1y,) =1-exp (=2 (4.b)
20y
tAoy | << oy &)

where v*,v” mean that the sign of AGy is posi-
tive or negative respectively. Proof is given in ref-
erence 9. In the learning process of the neural
network, desired output at time f+1is assumed
to be o4'(x)instead of 0,(x). So, instance feed-
back error will be Aoy (x) at time ¢. Although the
difference between G4 (x) and O,(x)is large at

the beginning of learning process, it gets small
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af-er sufficiently large learning time 2.

Figure 1 shows the schematic diagram of

VALEAN, where block of “Learning Rule’ can be
described by Equation (4.a), (4.b), and (5).

<

VALEAN

Learning Rule

|
= Ty
»

Feedforward

Multilayer Perceptron

1 T

Fig. 1 Schematic diagram of variance learning neural network

3. TRANSIENT STATE ANALYSIS

3.1 Effect of feedback error magnitude in
transient state

In this section, relations of feedback error to
convergence and learning stability are studied
and computer simulation examples are utilized for
the demonstration. Figure 2 shows error back
propagation in three layered network. The solid
lines show the forward propagation of signals and
the dashed lines show the backward propagation
of arrors (8’5). The back propagation update rule
alvays has the form

Aw,, =165 x V¥ O

H

where subscript p and q refer to the two ends of
the input and output connection concerned,
superscript # refers to input pattern, M refers to
the learning rate, and V stands for the appropri-
ate input-end activation from a real input. The
meaning of & depends on the layer concerned.
For the output layer, it is given by Equation (7).
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5@ = Viy [Gr(x) —O'N(x)]‘- @)

Fig. 2 Back propagation of multilayer perceptron. The solid
lines show the forward propagation of signals and the
dashed lines show the backward propagation of errors

t+1is
(x) instead of 0;(x), Equa-
tion (7) is defined by the following equation.

When the desired output at time

t+]

assumed to be oy
8, =V.[Acy); ®

where has stochastic behavior, since AOy is
stochastic. So learning process is stochastic.
Expectation of instance feedback error AOyat
given input pattern x is as follows.

E[Acy]=l Aoy 1 (p(v") ~ p(™)) ®

=lAoy L[ (pv* 13,) = p(v™ Ly ) F(y,)dy,
20,

J3o6k+0?

Equation (9) satisfies the following equations.

=[I- 1lAc, |

E[Aoy oy <<o,]=l Aoy | (10.a)
ElAo,loy =0,]1=0 (10.b)
ElAoy loy >>0:]=—1A0, | (10.c)

As a result, the magnitude of feedback error



| Ao, Imeans the maximum possible value in the
learning process. This is possible when the differ-
ence between output value of neural network and
true variance is very large as shown in equation
{10.a) and (10.c). The following three equations
were proposed” for the magnitude of feedback

error Aoy |
A, 1=C (11l.a)
1AGy, =1() o) (11.b)
IAGY, l= r(1)- (0%, + &) (11.c)

where C is arbitrary constant value, Y(Dis
decay parameter, which decreases with learning
time ¢, and & is additive parameter, small con-
stant value.

3.2 Computer Simulation for Transient Analysis

One hundred sample values with gaussian dis-
tribution are used for the computer simulation.
Output value of neural network at tirie f and
t+1is assumed to be oy(x)and o' (x) respec-
tively. o%is assumed to be 10%and two types of
Y is used as shown in the following equation and

Figure 3.

=t (12.q)
1+¢,

2

t
Y=Y eXp(—i) (12.b)
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Fig.3 Two types of decay parameters. The dashed line is geo-
metric decay and the solid line is exponential decay.
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where Yois 0.01 and f; is decay time. Equation
(12.a) and (12.b) is defined as geometrical decay
and exponential decay, respectively.

Decay time Z;is defined as follows.

14

= a3)

where N# is the number of pattern.
Figure 4. (a) shows the learning process of
VALEAN using Equation (11.a). The value of C is

0.010;, 0.001 o, 0.0001 o, respectively. The
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Fig. 4 Transient State of Variance Learning Process
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large value of C makes the time of transient state
to be short and the learning process to be unsta-
ble. It is not adequate to use larger value than
0.01 05 in practical situation, because neural net-
work is plausible to diverge at large feedback
error. So, the value of C is desired to have large
value at the beginning and small value at the end
of the learning process. It is impossible to make C
have the desired value, however, since true value
»f variance O is unknown.

Figure 4. (b) shows the learning process of
VALEAN using Equation (11.b). Oyis used for
determination of feedback error magnitude
‘nstead of unknown o;.

Shortcoming of this method is that the update
speed may be inadequately slow when the output
of neural network has smaller value than the true
value, This situation can occur in the beginning of
learning process. Solid line is exponential decay
and dashed line is geometric decay in this figure.

Figure 4. (¢) shows the learning process of
YVALEAN using Equation (11.¢). To overcome the
shortcoming of Equation (11.b), additive term g is
used and its value is 0.01 in this simulation. In
transient state, decay term 7yand additive term
e make good performance in estimating the true
variance 0. Solid line is exponential decay and
cashed line is geometric decay in this figure.

4. STEADY STATE ANALYSIS

Steady state can be defined as the time dura-
tion [#,t,], in which the probability function
p(oy)is identical for any time t, where
4 <t<t,and T is sufficiently long time to obtain
p(oy,) . Vibratory behavior of the estimated out-
put is one of the characteristics of stochastic
learning algorithm as shown in Figure 4. Magni-
tude of feedback error, Ao, lis closely related to
the probability function pP(Sy)in steady state,
where Oy is the output of VALEAN. Relations
between magnitude of feedback error and the

probability function of the neural network output
is studied in this section. From the equation
(4.a), the following equation can be driven.

PO =" pOv71y,)- f(3,)dy, 14)
GN

{302 + 073,

Let the magnitude of feedback error! Aoy, the
one N th of true variance O, where N is a posi-
tive integer. Variance Oyestimated by VALEAN
is assumed to be described by n times Aoy !,

where nis zero or a positive integer.

o, =N-1A0 | as)
oy =nlAc| 16)

Using equation (15), (16) and a right triangle
whose base side, vertical side and interior angle
are \/go'rs Oyand @ , respectively, as shown in
figure 5. Equation (14) can be described by the
following equation.

_ n
pv In)=p(v o, =nIAO'l)=\/—=__——=sin(9)
3N +n?

p(v" In+1)=sin(6 + 8) an

! |Ac]

n|Ao

e 0+48 |

o, J3N|aq|
Fig. 5 A right triangle with base side, vertical side and interior
angleare 30,, o, and ¢ , respectively.

Let interior angle be @+ § . when Oyis (n+1)
lAc .
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[=8

_ tan(@ + §) - tan(6)
1+ tan(@ + &) tané

V3N

(18)

3N +n(n+1)
lim tand =lim cos 6 =6
§-0 80

Using the theorem 6 in appendix, probability
function p(c,)satisfies the following equation.

pv*, M =p(v ,n+1) (19)
or
p(n) p(v" In)=pn+1) p(v_ In+1) (20)

Let p(n+1)be described by the following equa-
tion.

p(n+1)=p(n)+ Ap(n) 21
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Fig. 6 Probability function of estimated variance for N=100,
1000, 10000 respectively

Using the equation (17), (19) and (21), equa-
tion (20) can be described by

p(n)-[1-2sin6 ~ 6 cosf] = Ap(n) - (sinf + 6 cosH)
(22)
or

Ap(n) =r(n,N)- p(n) (23)

where r(n,N)is defined by the following func-
tion using equation (18).

(3N +n* +n)-(V3N? +n* =2n) - 3IN?

rn,N)=
(N} n(3N? +n® +n)+3N?

(24)

As a result, probability function p(n)can be cal-
culated by the following equation

n-1
p(m)=pO)-T[Q+rG,NY) (25)
i=0
where p(0)can be calculated by the following
condition.

3 p(my=1
n=0

Figure 6. shows the shape of the probability
function p(n)with respect to N Large value of N,
which means small value of Ao, makes the
shape of probability function p(n)be sharp as
shown in this figure. In practice, p(0)has too
small value to deal with. So, maximum value of
probability distribution function P(0,n,), P(n,,)
which are the left or right tail area of probability
density function p(n)and explained in theorem 6
and 7 of appendix, should be used.

Let the confidence level @ be defined with
respect to maximum relative error as follows.

N+M

a= Y p(n)
N-M
where M defines maximum relative error, max

(E,). as shown in equation (27)

—0'N|=|N—M|
| N |

(26)

|°'T

max (E,) = max 27

T
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Figure 7. shows the confidence level & with
respect to maximum relative error max (E,) and
magnitued of instance feedback error, which can
be described by M.

1 e
a JR N=10000 ——
yd N=1000
l/
/ N=100 -
0 Jor -]
o 0.1 0.2 0.3 or

Fig. 7 Confidence level & with respect to maximum relative
error

The following empirical formula can be used to
describe the relation between relative error and
magnitude of feedback error.

F= lo, -0, |
O'T/\/ﬁ
PIE<k, =«

(28)

(29)

Table 1 shows the value of k, with respect to
a . For example, when the relative error is
desired to be smaller than 0.01 with 0.99 confi-
dence level, minimum number of N is as follows.

ky = kyoo = 2.0982

lo,~oy! _ &

—I =¥ <& <0.01
o, VN

N = (k,/0.01)> = 44,521

(30)

As a result, when the value of ¥ is set to 1
over N, maximum relative error is expected to
be smaller than 0.01 with 0.99 confidence level,
where 7 is the decay parameter described in
eqaation (11), and Nis determined as shown in

eqaation (30).

147

Table 1. k,, with respectto ¢¢ and N

a 100 500 1000 gobeo 10000
0.800 05013 0.5286 0.5350 0.5437 0.5457
0.550 0.5683 0.5847 0.6010 0.6097 06118
0600 0.6390 0.6651 0.6715 0.6801 0.6822
0.650 0.7145 0.7411 0.7475 0.7561 0.7581
0700 0.7972 0.8243 0.8306 0.8392 0.8413
0.7650 0.8507 09174 0.9236 0.9322 0.9343
G800 0.9975 1.0243 1.0309 1.0394 1.0414
Q850 11282 11535 1.1599 1.1684 11704
0,500 1.2049 1.3214 1.3274 1.3360 1.3380
0910 1.3382 1.3627 1.3688 13773 1.3783
0820 1.3826 1.4079 1.4140 1.4224 1.4245 -
0.930 1.4336 14579 1.4640 1.4724 14745
0.940 1.4887 1.5140 1.5201 1.5286 1.5307
0.950 1.5554 1.5789 1.5848 1.5933 1.5954
49650 16318 16550 1.6616 1.669% 18N8
0.9570 172712 1.7504 1.7567 1.7649 1.7669
0.980 1.8566 L8778 1.8344 1.8925 1.8945
0.000 2.0622 2.0826 20879 2.0962 2.0082

5. CONCLUSION

Relations of feedback error magnitude to tran-
sient and steady state behavior of variance learn-
ing neural network (VALEAN) are studied in this
paper. Expectation value of feedback error is
maximized to be HAo| when the difference
between true variance and estimated variance is
very large. In practice, this case ocurrs in the
beginning of the learning process. Relation
between magnitude of feedback error and tran-
sient behavior of VALEAN is studied in the part
of transient state analysis. Decay parameter ¥
and additive parameter € is proposed to improve
the learning behavior in this study.

In steady state analysis, relations between mag-
nitude of feedback error and probability function
of estimated variance are studied. Using the
result of this analysis, it is possible to expect the
maximum relative error between true variance
and estimated variance with desired confidence
level as shown in the simple example. It is also
possible to determine the decay parameter 7 ,
since the magnitude of feedback error can be
described by N. From transient and steady state
analysis of VALEAN, we can design adquate value



of decay parameter with respect to learning time t.
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Appendix

Let 1+ r(n,N)be defined by the following equa-

tion
BN +n* +n)(W3N* +n? ~n)

1+r(n,N)=
rn.v) n(3N? + n* +n)+3N?

(A.1)
where n and N are positive integers.

Theorem 1.1+ r(n,N)is monotonic decreas-
ing function
that is

1+r(n+1,N)
14+ r(n,N)

Proof
Let A, =3N*+n’and B,=A, +n. . Then left
hand side of equation (A.2) can be written as fol-

(A2)

lows.

l+r(n+L,N) A, —(n+1)

1+ r(n,N) ' JAn -n
nB,B,., +3N*B, S (a3)
(n+1)B,B,,, +3N*B,
Suppose that
AL —(n+]
N D) (A4)
A, —n
and
2

nB,B,, +3N Bn;, <1 (A5)

(n+1)B,B,, +3N*B,

Then 1+7r(nN)can be said to be monotonic
decreasing function.
equation (A.4) can be written
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JA <A, +1 (A.6)
or
2n < 2y3N* +n? (A7)

From the equation (A.7), it is clear that (A.4)
is true.
Equation (A.5) can be written

3N*(B,,,—B,)<B,B,,, (A.8)

or

3N?(2n+2) <(3N? +n® +n)3N* +n’> +2n+3)
(A9)

From the equation (A.9), it is clear that (A.5)
s true.

1+ r(n,N)is monotonic decreasing function,
since (A.4) and (A.5) are true.

Theorem 2. 1+ 7(n,N)has the following value.

1+ r(0,N) =~/3N (A.10)
4N +1

1+ r(N,N) = A1l

NN = b

1+ 7(c0,N)=0 (A.12)

Proof

It is axiomatic that (A.10), (A.11), and (A.12)
is true.

Theorem 3. The following equation is sat-
isfied for any positive integer N

O<l+r(m,N)<1 n>N (A.13)

Proof
Using the theorem 1 and the Equation (A.11),
and (A.12), the proof of {A.13) is completed.

Theorem 4. The following equation is sat-
isfied for positive integer N

1
0<—— —
1+r(n,N)<1

Proof
1+7(n,N) at n=N —1can be written

@N* - NYW4N =N +1-N+1) (A.15)

n<N (A.14)

1+r(N-1,N) =
" ) AN ZINT 4N
JU@N-DEN-1-N+1) _ NAN-D
AN? —2N +1 AN*-2N+1

Using the theorem 1 and the Equation (A.10),
and (A.15), the proof of (A.14) is completed.

1+r(n,N) §

z|x

3] 0.5 1 1.6 2

Fig. A.1 plot of I+r(n,N) with respect to #/N for N=100,
1000, 10000 respectively

Theorem 5. Probability p(n)in steady state
satisfies the following equation.

p(v ,n)=p(v_,n+1) (A.16)

Proof
Probability p(n)in steady state satisfies the fol~
lowing equation.

(a.17)
(A.18)

p'(my=p' (v ,n)+p (v ,n)
P ) =p' (v n=D+p (v n+1)
where P'(n) is probability function at time .

The following equation should be satisfied since
probability p(n) is in steady state.
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[
i
E=
m

p(n)=p'(n)=p™'(n) (A.19)

or

pvt,n=1)—p(v ,n)=p(v',n)- p(v_,n+1)

(A.20)
for any positive integer n.
(A.20) can be written
pv ) —-p(v ,n+1)=C (A.2D

where Cis independent of n.
(A.21) can be written as follows when n=0

p(v*,.0)=p(v_,D=C (A.22)
or
p©)=p(y*,0)=C+p(v7,1) (A.23)

(A.18) can be written as follows when n=0.
p(0)= p(v*,~1)+ p(v",1)
=p(v™1)

Using (A.23) and (A.24). C should be 0. This
completes the proof.

(A24)

Theorem 6. Let the probability distribution func-
tion P(n,n,) be defined by the following equation.

pln,ny) = Zzp(k) (A.25)

k=n;
P(n, + 1,) satisfies the following inequality
equation.

1
r(n,N)

P(n, +1,00) < —(1 + )p(n,) (A.26)

where n, 2 N.
Proof

k=1
pn+ky=pn)-[1 Q+r(n+i,N)) k=1%,..
i=0
or (A27)

p(n, +1,00) = i p(n, +k) (A.28)

k=1

T @+ rn+iN))

M
:»

=pn)), |

I

=
1]
]
<

Using the theorem 1 and 3, equation (A.28)
may be described by the following equation.

P(n, +1,0) < p(n)3, (1+r(n,, N))}
k=1

Using the equation (A.29). the prbof of (A.26)
is completed.

(A29)

Theorem 7. P(O,n, ~1) satisfies the fol-
lowing inequality equation.

11 (n,,N)

PO,n, -1 <
O.m, =1) 1-r,(n,,N)

r,(n,,N)p(n,) (A30)

where n, < N.

Proof
From the equation (25), the following equation
is satisfied.

k
pn—k)y=pM[[n-i,Nk=12,.. (A3

i=i
1

where r,(n- L, N) = ——M—.
1+ r(n—-1,N)

=1

PO,n, ==Y, p(k)

k=0

Nty
=Y pln, ~k) (A.32)
k=1
ny k
=p(n) ([T n(n, —i.N))
k=1 k=1
Using the theorem 1 and 4,
)
P(O,n, —1) < p(n,)Y, r(n,,N) (A.33)

k=1

Using (A.33), the proof of (A.30) is completed.
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