Many multiprocessing systems have been developed to exploit the parallelism and to improve the performance. However, the naive multiprocessing schemes were not successful as many researchers thought, due to the heavy cost of communication and synchronization resulting from parallelization. In this paper, we will identify the reasons for the poor performance and the compiler requirements for the performance improvement. We realized that the decisions for multiprocessing should be derived by the overhead information. We applied this idea to the automatic parallelizing compiler, SUIF. We substituted the original backend of SUIF with our backend using MPI, and gave it the capability to validate parallelization decisions based on overhead parameters. This backend converts the intermediate code containing spacification of parallelizable regions into the distributed-memory based parallel program with MPI function calls without excessive parallelization that may cause performance degradation.
Proceedings of the Korea Information Processing Society Conference
/
2002.04a
/
pp.11-14
/
2002
분산 공간 데이터베이스 시스템에서 자주 수행되는 공간 죠인 질의는 공간 데이터의 특징인 대용량성과 복잡성으로 인하여 공간 연산 수행시 연간을 수행하는 서버의 CPU 및 디스크 I/O상의 과부하를 일으킨다. 본 논문은 이러한 분산 광간 데이터베이스 시스템에서 수행 비용이 많이 드는 원격 사이트간의 공간 죠인 질의를 병렬적이며 연쇄적으로 수행하는 기법을 제안한다. 본 기법은 공간 죠인 연산의 대상이 되는 릴레이션들을 공간 연산의 특성에 따라 순서화하고, 그 중 최하위의 죠인에 참여하는 릴레이션들 중 하나를 이등분 하는 방법으로 공간 죠인 연산을 분리한 추, 질의 수행에 참여하는 두 서버에게 죠인 연산을 분배한다. 각 서버는 분할된 공간 죠인 연산을 동시에 연쇄적으로 저리하고 결과를 병합하여 최종 죠인 결과를 생성한다. 본 기법은 릴레이션을 분할하여 죠인을 수행함으로써 공간 연산에 참여하는 객체의 수를 절반으로 줄이며 R-Tree 등의 공간 인덱스 탐색 횟수와 그 범위를 감소시킨다. 또한 연쇄적인 질의 처리로 죠인의 결과인 임시 릴레이션을 생성하지 않으므로 대용량의 데이터에 대한 복잡한 질의에 대해서도 제한 없이 수행한다.
대용량 멀티미디어 미디어 서버를 구성함에 있어 I/O 병목현상을 극복하기 위하여 저장 서버들과 제어 서버로 구성되어진 2계층 분산 클러스터 서버구조가 많이 사용된다. 2 계층 분산 클러스터 서버는 부하 균등, 대역폭 관리 및 저장 서버의 관리 측면에서 유리한 반면, 저장 서버와 제어 서버간의 통신 오버헤드를 발생시킨다. 이러한 오버헤드를 줄이기 위해서는 저장 서버에서 읽은 미디어 데이터를 제어 서버를 거치지 않고 직접 클라이언트에 전송할 수 있어야 한다. 그리고, 저장 용량을 확장하거나 손상된 디스크를 교체하는 경우를 대비하여 분산 클러스터 서버는 다양한 성능의 이기종 디스크를 지원하여야 한다. 또한, I/O 장치와 운영체제가 빠르게 발전됨에 따라 미디어 서버는 새로운 I/O 장치 및 운영체제 등에 쉽게 이식될 수 있어야 하고, 응용 소프트웨어 개발자가 시스템의 환경에 따라 블록크기, 데이터 배치정책, 사본 정책 등을 유연하게 조절할 수 있어야 한다. 본 논문에서 위에서 언급한 멀티미디어 서버의 요구를 고려하여 Fast Ethernet 환경에서 병렬 멀티미디어 파일 시스템(PMFS : Parallel Multimedia File System)을 설계 및 구현하고 실험을 통해 PVFS(Parallel Virtual File System)와 성능을 비교 분석하였다. 이 실험의 결과에 따르면 PMFS는 멀티미디어 데이터에 대하여 PVFS보다 3%∼15%의 향상된 성능을 보였다.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
2000.11a
/
pp.480-483
/
2000
공학의 많은 응용분야에서 큰 회소 행렬(Large Sparse Matrices)에 대한 가장 작거나 또는 가장 큰 고유치(Eigenvalues)들을 요구하게 되는데, 이때 많이 이용되는 것은 Krylov Subspace로의 Projection방법이다. 대칭 행렬에 대해서는 Lanczos방법을, 비대칭 행렬에 대해서는 Biorhtogonal Lanczos방법을 이용할 수 있다. 이러한 기존의 알고리즘들은 새롭게 제안되는 병렬처리 시스템에서 효과적이지 못하다. 많은 프로세서를 가지는 병렬처리 컴퓨터 중에서도 분산 기억장치 시스템(Distributed Memory System)에서는 프로세서들 사이의 Data Communication에 필요한 시간을 줄이도록 해야한다. 본 논문에서는 기존의 Lanczos 알고리즘을 수정함으로써, 알고리즘의 동기점(Synchronization Point)을 줄이고 병렬화를 위한 입상(Granularity)을 증가시켜서 MPP인 Cray T3E에서 Data Communication에 필요한 시간을 줄인다. 많은 프로세서를 사용하는 경우 수정된 알고리즘이 기존의 알고리즘에 비해 더 나은 speedup을 보여준다.
Recently, many researchers have been studied several high performance data transmission techniques such as TCP buffer Tuning, XCP and Parallel Sockets. The Parallel Sockets is an application level library for parallel data transfer, while TCP tuning, XCP and DRS are developed on kernel level. However, parallel socket is not analyzed in detail yet and need more enhancements, In this paper, we verify performance of parallel transfer technique through several experiments and analyze character of traffic interference among socket connections. In order to enhance parallel transfer management mechanism, we predict the number of socket connections to obtain SLA of the network resource and at the same time, affected network bandwidth of existing connections is measured mathematically due to the interference of other parallel transmission. Our analytical scheme predicts very well network bandwidth for applications using the parallel socket only with 8% error.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2014.05a
/
pp.479-482
/
2014
Nowadays open-source hadoop systems have been using widely to efficiently manage a fast-growing big data. Hadoop systems consist of distributed file processing system called HDFS (Hadoop Distributed File System) and distributed parallel processing system called MapReduce. The MapReduce reads and processes big data from HDFS and then processed results are written in HDFS again by the MapReduce. Such a processing method has different system structure respectively according to hadoop version. Therefore, this paper shows analysis results for performance of hadoop systems. For this, we devise a way which monitors hadoop systems and measure occurrence frequency of processes, threads, and variables generated in hadoop system itself using the devised way. So, by using the measured results as analysis indicator, we help the indicator predict inner performance of hadoop systems.
Park, Kyongseok;Yu, Chan Hee;Kim, Yuseon;Um, Jung-Ho
Proceedings of the Korea Information Processing Society Conference
/
2021.11a
/
pp.535-536
/
2021
빅데이터를 활용한 기계학습 모델을 개발하기 위해서는 빅데이터 처리를 위한 플랫폼과 딥러닝 프레임 워크 등 고급 분석을 수행할 수 있는 도구의 활용이 동시에 요구된다. 그러나 빅데이터 플랫폼과 딥러닝 프레임워크를 자유롭게 활용하기 위해서는 상당한 수준의 기술적 지식과 경험이 필요하다. 또한 빅데이터를 이용한 딥러닝 모델을 개발할 경우 분산처리와 병렬처리에 대한 지식과 추가적인 작업이 요구된다. 본 연구에서는 빅데이터를 활용한 기계학습 모형을 자유롭게 개발 및 공유하고 분산 딥러닝을 위한 시스템적 지원을 통해 분야별로 딥러닝 모형을 개발하는 응용 연구자들이 활용할 수 있는 플랫폼을 제시하였다. 본 연구를 통해 다양한 분야의 연구자들이 자신의 데이터를 이용하여 모형을 개발할 경우 분산처리와 병렬처리를 위한 기술적 제약을 극복하고 보다 빠르고 효율적인 방법으로 모형을 개발하고 현업에 활용할 수 있을 것으로 기대한다.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2014.11a
/
pp.203-205
/
2014
UHD 영상 콘텐츠는 FHD 영상에 비해 생생하고 더 좋은 고화질의 영상을 제공하지만 영상정보의 데이터 양은 4K UHD 경우 4 배 이상이다. 이러한 초대용량의 UHD 영상을 기존의 병렬/분산 처리를 이용하여 비디오 코딩 한다면 UHD 의 초대용량 특성으로 인하여 연산량 부하가 발생하게 된다. 따라서 UHD 영상은 기존의 분산처리 방식이 아닌 초대용량 데이터를 빠르게 처리 할 수 있는 새로운 분산 처리기술이 필요하다. 본 논문은 UHD 콘텐츠를 빠르게 트랜스코딩 할 수 있는 클라우드 기반 UHD 영상 트랜스코딩 시스템을 제안한다. 본 논문에서 제안하는 UHD 영상 트랜스코딩 시스템은 다음 3 가지 패킷 분석기, 분산 트랜스코더, 스트림 합성기로 구성된다. 패킷 분석기는 입력 영상을 분석하여 오디오와 비디오 스트림을 분할하고 비디오 스트림은 분산처리를 할 수 있도록 영상 패킷을 분할한다. 분산 트랜스코더는 클라우드 환경을 이용하여 분할된 영상 패킷들을 분산 디코드 및 인코드 처리한다. 스트림 합성기는 트랜스코딩이 완료된 비디오 스트림과 패킷 분석기에서 획득하였던 오디오 스트림을 합성하는 기능을 한다. 제시하는 방안을 적용하여 클라우드 기반 영상 트랜스 코딩 시스템을 구현하였으며, 구현된 시스템은 대용량의 UHD 영상을 빠른 속도로 트랜스코딩이 가능하다.
Proceedings of the Korea Information Processing Society Conference
/
2000.10a
/
pp.661-664
/
2000
본 연구에서는 인터넷을 기반으로 하고 GIS(Geographical Information System)와 ITS(Intelligent Transportation System)제어 응용을 고려 한 컴퓨팅 플랫폼으로 EIMAS(Efficient and Intelligent Multi-Agent System)을 제안한다. GIS 와 관련 활용 시스템들은 개방형 지리 정보 처리 상호 운용 개념이 확산되면서 물리적으로 분산된 환경을 가지지게 되었고 이러한 분산 환경에서 프로그램개발과 사용자의 요구에 서비스를 효과적으로 제공하기 위하여, GIS와 이와 연계한 GI(Geographical Information) 활용시스템들의 각기 다른 구성 요소들을 통합하는 시스템이 요구된다. GIS 와 GIS Application으로 ITS(Intelligent Transportation System)위한 Java Mobile Agent와 Multiple Agent System 인 EIMAS를 플렛폼으로 제안한다. 이 시스템은 GIS 시스템과 ITS 시스템에 제공되는 Agent가 활동하는 플레이스 위에서 에이전트가 목적과 워크에 적합한 효율적인 워크플로우를 생성하여 시간 효율적이고 지능적인 분산. 병렬처리를 수행하는 플렛폼을 설계한다.
본 논문은 연속 시간과 이산 시간 비선형 상호 결합 시스템에 대한 분산 정적 출력 궤한 제어기의 설계에 대해 연구한다. 먼저 퍼지 모델 기법을 이용하여 비선형 상호 결합 시스템을 Takagi-Sugeno (T-S)퍼지 모델로 모델링한다. 각각의 하위 시스템에 대한 정적 출력 궤한 제어기를 병렬 분산 보상(PDC)기법을 이용하여 구한다. 선형 행렬 부등식(LMI)을 통하여 하위 시스템의 안정화를 위한 이득값을 구한다. 이득값을 통하여 하위 시스템들이 안정화되고 그를 통해 전체 상호 결합 시스템이 안정화됨을 모의실험을 통하여 증명한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.