• Title/Summary/Keyword: 분사 각도

Search Result 428, Processing Time 0.024 seconds

Effect of Diesel Nozzle Internal Geometry on the Spray Characteristics (디젤노즐의 내부구조가 분무특성에 미치는 효과)

  • 배종욱;안수길
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.6
    • /
    • pp.1238-1249
    • /
    • 1989
  • 본 연구에서는 분무체적에 영향을 미치는 분사차압, 주위공기밀도, 노즐공의 직경과 분무각을 변수로 하여 상관관계식을 이론적으로 유도하고 이를 근거로 하여 분 무의 평균공연비 증대를 향상시키는 방안을 제시하였다.

Study on the Characteristics of Long Wave Infrared Signal by Water Injection around the Exhaust Plume of the Micro-jet Engine (마이크로 제트엔진 배기플룸 주위 물 분사에 따른 장파장 적외선 신호특성 연구)

  • Yu, Gunwon;Choi, Seongman
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.26 no.2
    • /
    • pp.28-39
    • /
    • 2022
  • An experimental study was carried out to understand the characteristics of the long wave infrared signal emitted from the exhaust plume when water is sprayed around it. The micro-jet engine was used to generate the exhaust plume, and eight water spray nozzles were installed around the exhaust nozzle. Two water injection angles were applied, one is sparying parallel to the exhaust plume, and the other is spraying water into the exhaust plume. The measurement results are as follows. When spraying water parallel to the exhaust plume, the long wave infrared signal is decreased with water spray flow rate. When spraying water the exhaust plume, the long wave infrared signal shows a larger value than plume only.

Internal Flow Characteristics & Performance Analysis of Plain Orifice and Pressure Swirl Atomizers (단공 분사기와 압력 선회형 분사기의 내부유동 특성 및 성능해석)

  • Lee Jang-Woo;Hwang Yong-Seok;Sung Hong-Gye
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.93-99
    • /
    • 2005
  • Performed were 2-phase numerical studies on two types of fuel atomizers, plain orifice and pressure swirl atomizer. In case of plain orifice, cavitation model was applied so that discharge coefficient, cavitation size, and magnitude of cavitation region characterized and compared with experimental results for several different pressure enforced to the orifice. In case of swirl atomizer, VOF model was applied to analyze air core size, spray angle, and wall pressure distributions with comparison of experimental results.

  • PDF

A Study on Spray Angle of Dual Swirl Injector with Different Recess Length (Dual Swirl Injector Recess 길이에 따른 분산각 평가)

  • Park, Hee-Ho;Kim, Tae-Han;Kim, Yoo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.7 no.3
    • /
    • pp.30-37
    • /
    • 2003
  • Spray angle of dual swirl injector is established according to the velocity ratio at orifice exit. Due to the internal mixing at recess and lack of correlation for the combined two fluid injection, prediction of spray angle is very difficult. This study deal with experimental work and numerical simulation on spray angle with different recess length. Among the multiphase flow models, the VOF model was selected to simulate the spray angle. Feasibility of numerical analysis are confirmed by comparing the results with the experimental data, and the effect of recess on spray angle are analyzed for single and combined spray case.

An Experimental Study of Surface Pressure on a Turbine Blade in Partial Admission (분사영역과 터빈익형 위치에 따른 표면압 변화에 관한 실험적 연구)

  • Choi, Hyoung-Jun;Park, Young-Ha;Kim, Chae-Sil;Cho, Soo-Yong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.8
    • /
    • pp.735-743
    • /
    • 2011
  • In this study, the distribution of surface pressure was measured in a steady state on a turbine blade which was moved the injected region and receded the stagnation region using a linear cascade apparatus. Axial-type blades were used and the blade chord was 200mm. The rectangular nozzle was applied and its size was $200mm{\times}200mm$. The experiment was done at $3{\times}10^5$ of Reynolds number based on the chord. The surface pressures on the blade were measured at three different nozzle angles of $58^{\circ}$, $65^{\circ}$ and $72^{\circ}$ for off-design performance test. In addition, three different solidities of 1.25, 1.38 and 1.67 were applied. From the results, the low solidity caused the low pressure on the blade suction surface at entering region and the reverse rotating force was generated at the low nozzle angle. The positive incidence also made the pressure lower on the suction surface at entering region.

Numerical Analysis of the Flow Characteristics of High-Pressure Injection Nozzle for Machine Tools (공작기계용 HP Holder 분사노즐 유동특성에 관한 수치해석)

  • Yi, Chung-Seob;Yun, Ji-Hun;Jeong, In-Guk;Song, Chul-Ki;Suh, Jeong-Se
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.10
    • /
    • pp.1061-1066
    • /
    • 2011
  • In this study, the flow characteristics of an injection nozzle installed in a high-pressure holder for improving productivity were determined. The inlet velocity, nozzle inflow angle, and nozzle outlet diameter were selected as design factors having an influence on the flow characteristics, and numerical analysis was conducted for these factors. As the inlet velocity is high and the nozzle outlet diameter is small, the pressure and velocity of the injected flow are high. In the case of the nozzle inflow angle, the variation of flow characteristics according to angle was slight, but the highest pressure and velocity were found at $15^{\circ}$. In addition, the possibility of chip elimination by the injected flow was analyzed on the basis of the numerical results.

Spray characteristics and performance of pressure swirl simplex injector for heavy duty industrial gas turbines (대형가스터빈용 단일 압력 선회식 연료분사기의 분무 특성 및 성능 평가)

  • Seok, Jungmin;Jeong, Hanjin;Choi, Inchan;Kim, Jaiho;Lee, Sanghoon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.892-895
    • /
    • 2017
  • As a component development of heavy duty industrial gas turbine combustor development program, pressure swirl simplex injector was designed and tested to figure out spray characteristics and performance. Injector flow rate as a function of pressure drop was measured and compared to the design target. Also spray shape was analyzed qualitatively and spray cone angle was measured from spray visualization image using shadowgraph. The flow test result showed that the injector was designed and manufactured correctly according to the design target and spray cone angle was measured from shadowgraph result. As a next step, PDA (Phase Doppler Anemometry) measurement is planned to figure out more specific spray performance and characterization.

  • PDF

Computational Study on The Effect of Injection Nozzle Hole Exit Angle Variation on Injection Characteristics (분사노즐 출구 각도 변화가 분사특성에 미치는 영향에 관한 계산적 고찰)

  • Kim, Ju Youn;Park, Kweon Ha;Lee, Seung Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.8
    • /
    • pp.997-1002
    • /
    • 2012
  • Emission regulations have been strengthened step by step for marine engines. A noble measure is required both inside and outside of the combustion chamber. The combustion characteristics in cylinder have a very close relationship with the exhaust emission characteristics. Injection valve and nozzle hole geometry is an important factor for combustion. The study to improve the spray characteristics has concentrated on nozzle inlet geometry and nozzle hole diameter, but the exit geometry has not considered. In this study the nozzle exit angle variation was tested. The results show that the angle between $30^{\circ}$ and $60^{\circ}$ is more effective than the other cases.

Spray characteristics on mixing region scale of twin fluid atomizer (이류체 분사노즐의 혼합영역 형상에 따른 분무특성)

  • 김병문;김혁주;이충원
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.6
    • /
    • pp.2147-2159
    • /
    • 1991
  • The effects of principal dimensions of internal mixing twin-fluid atomized and operating conditions on the atomizing characteristics are experimentally investigated. The tests are conducted over the wide range of air/liquid ratio to predict influences of the diameter and length of nozzle, contacting angle between air and liquid in the mixing chamber, and air orifice diameter on the mean drop size(SMD), spray angle, distribution of drop size, and spray dispersion, And also, initial distribution of liquid column by air stream within the mixing chamber are observed through the transparent nozzles. A He-Ne laser particle sizer(MALVERN Model 2604) was used to measure the Sauter.s mean diameter( $D_{321}$) and droplet sizes distribution. In this experiment the air/liquid ratio, mixing length and nozzle diameter have a great influence on SMD, spray angle, droplet sizes distribution and spray dispersion.

Characteristics of Fuel Mixing and Evaporation Based on Impingement Plate Shape in a Denitrification NOx System with a Secondary Injection Unit (2차 분사시스템을 갖는 De-NOx 시스템의 충돌판 형상에 따른 연료의 혼합 및 증발 특성 향상을 위한 연구)

  • Park, Sangki;Oh, Jungmo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.22 no.7
    • /
    • pp.884-891
    • /
    • 2016
  • A secondary injection system in a diesel engine has benefits: it can be controlled independently without interrupting engine control, it can be adapted to various layouts for exhaust systems, and it pose no reductant dilution problems compared to post injection systems in the combustion chamber or other supplemental reductant injections. In a secondary injection system, the efficiency of the catalyst depends on the method of reducing the supply. The reductant needs to be maintained and optimized with constant pressure, the positions and angles of injector is a very important factor. The concentration and amount of reductant can be changed by adjusting secondary injection conditions. However, secondary injection is highly dependent upon the type of injector, injection pressure, atomization, spray technology, etc. Therefore, it is necessary to establish injection conditions the spray characteristics must be well-understood, such as spray penetration, sauter mean diameter, spray angle, injection quantity, etc. Uniform distribution of the reductant corresponding to the maximum NOx reduction in the DeNOx catalyst system must also assured. With this goal in mind, the spray characteristics and impingement plate types of a secondary injector were analyzed using visualization and digital image processing techniques.