• 제목/요약/키워드: 분무 열분해

검색결과 130건 처리시간 0.024초

분무열분해공정에 의한 인듐 산화물 나노 분말 제조에 미치는 반응인자들의 영향 (Effect of Reaction Factors on the Fabrication of Nano-Sized Indium Oxide Powder by Spray Pyrolysis Process)

  • 유재근
    • 한국분말재료학회지
    • /
    • 제11권6호
    • /
    • pp.493-502
    • /
    • 2004
  • In this study, nano-sized indium oxide powder with the average particle size below 100 nm is fab-ricated from the indium chloride solution by the spray pyrolysis process. The effects of the reaction temperature, the concentration of raw material solution and the inlet speed of solution on the properties of powder were studied. As the reaction temperature increased from 850 to $1000^{\circ}C$, the average particle size of produced powder increased from 30 to 100 nm, and microstructure became more solid, the particle size distribution was more irregular, the intensity of a XRD peak increased and specific surface area decreased. As the indium concentration of the raw material solution increased from 40 to 350 g/l, the average particle size of the powder gradually increased from 20 to 60 nm, yet the particle size distribution appeared more irregular, the intensity of a XRD peak increased and spe-cific surface area decreased. As the inlet speed of solution increased from 2 to 5 cc/min., the average particle size of the powder decreased and the particle size distribution became more homogeneous. In case of the inlet speed of 10 cc/min, the average particle size was larger and the particle size distribution was much irregular compared with the inlet speed of 5 cc/min. As the inlet speed of solution was 50 cc/min, the average particle size was smaller and microstructure of the powder was less solid compared with the inlet speed of 10 cc/min. The intensity of a XRD peak and the variation of specific area of the powder had the same tendency with the variation of the average par-ticle size.

분무열분해 공정에 의한 규산수용액으로부터 다양한 미세기공을 갖는 실리카 나노다공체 제조 (Preparation of Nanoporous Silica Particles containing Various Pore Sizes from Silicic Acid by Spray Pyrolysis)

  • 김선경;이총민;장한권;장희동
    • 한국입자에어로졸학회지
    • /
    • 제12권3호
    • /
    • pp.65-72
    • /
    • 2016
  • Nanoporous $SiO_2$ particles containing different pore volume and size were prepared from silicic acid by a spray pyrolysis. The pore size, pore volume and particle size could be controlled with varying the precursor concentration, reaction temperature, and amount of organic templates such as Urea and poly ethylene glycol (PEG). The pore size distribution, pore volume and specific surface area of as-prepared particles were analyzed by BET and BJH methods, and the average particle sizes were measured by a laser diffraction method. The nanoporous $SiO_2$ particles ranged $0.6-0.9{\mu}m$ in diameter were successfully synthesized and the average particle size increased as the silicic acid concentration increased. The morphology of nanoporous $SiO_2$ particles was spherical and pores ranged 1 - 40 nm in diameter were measured in the particles. In case of Urea added into silicic acid, it showed no much difference in the morphology, pore size and pore volume at different Urea concentration. On the other hand, when PEG was added, it was clearly observed that pore diameter and pore volume of the particles surface increased with respect to PEG concentration.

합성 조건이 분무열분해 공정에 의해 합성되는 Co3O4 분말의 특성에 미치는 영향 (The Effect of Preparation Conditions on the Characteristics of Co3O4 Particles Prepared by Spray Pyrolysis)

  • 김도엽;주서희;구혜영;홍승권;강윤찬
    • 한국재료학회지
    • /
    • 제16권1호
    • /
    • pp.11-18
    • /
    • 2006
  • [ $Co_3O_4$ ] particles with non-aggregation characteristics were prepared by various conditions such as preparation temperature, flow rate of carrier gas, and concentration of spray solution using spray pyrolysis. The morphology and crystallinity of the preformed particles obtained by spray pyrolysis at various conditions affected the mean size and morphology of the post-treated $Co_3O_4$ particles. The preformed particles with hollow and porous morphology obtained from spray solution with citric acid and ethylene glycol turned to $Co_3O_4$ particles with nano size, regular morphology and non-aggregation characteristics after post-treatment at $800^{\circ}C$. On the other hand, the preformed particles obtained by the preparation conditions of short residence time of particles inside hot wall reactor and high reactor temperature turned to $Co_3O_4$ particles with aggregated morphology after post-treatment. The mean crystallite size and particle size of the $Co_3O_4$ particles prepared from optimum preparation conditions were 47 nm and 210 nm at post-treatment temperature of $800^{\circ}C$.

초음파 분무열분해를 이용한 $SrZr_{0.95}$$Y_{0.05}$$O_{2.975}$ 분말의 합성 (Synthesis of $SrZr_{0.95}$$Y_{0.05}$$O_{2.975}$ Powder by Ultrasonic Spray Pyrolysis)

  • 박양수;심수만
    • 한국세라믹학회지
    • /
    • 제35권11호
    • /
    • pp.1171-1181
    • /
    • 1998
  • $SrZr_{0.95}$$Y_{0.05}$$O_{2.975}$ powder was synthesized by ultrasonic spray pyrolysis using a solution that Sr carbonate and Zr and Y nitrates were dissolved in a citric acid solution. The processes of particle formation were in-vestigated with respect to solution properties and pyrolysis temperature. With changing the solution con-centration form 0.1M to 0.01M there was a tendency that average sizes of droplets and particles were de-creased and their size distributions were narrowed. Citrate functional groups converted the droplets into gel particles which prevented an inhomogeneous precipitation of the metal ions and facilitated the diffusion of gases during thermal decomposition. As a result the powder having spherical particles without hollow par-ticles could be prepared. Low pyrolysis temperature led to amorphous particles due to incomplete pyrolysis and made the particles difficult to maintain spherical shape due to retarded gelation of the droplets. Whereas higher pyrolysis temperature produced hollow and broken particles because the droplets un-derwent rapid gelationand decomposition. The particles obtained at two pyrolysis temperature $500^{\circ}$and $1000^{\circ}C$ consisted of a perovskite phase and a very small amount of $SrCO_3$ However after calcination at $1000^{\circ}C$ the particles contained a single perovskite phase having an average particle size of 0.63${\mu}{\textrm}{m}$ and an apparent density near to the theoretical density.

  • PDF

분무열분해공정에 의한 니켈 페라이트 나노 분말 제조에 미치는 반응인자들의 영향 (Effect of Reaction Factors on the Fabrication of Nano-Sized Ni-ferrite Powder by Spray Pyrolysis Process)

  • 유재근;서상기;박시현;한정수
    • 한국분말재료학회지
    • /
    • 제11권3호
    • /
    • pp.202-209
    • /
    • 2004
  • In this study, nano-sized powder of Ni-ferrite was fabricated by spray pyrolysis process using the Fe-Ni complex waste acid solution generated during the shadow mask processing. The average particle size of the produced powder was below 100 nm. The effects of the reaction temperature, the inlet speed of solution and the air pressure on the properties of powder were studied. As the reaction temperature increased from 80$0^{\circ}C$ to 110$0^{\circ}C$, the average particle size of the powder increased from 40 nm to 100 nm, the fraction of the Ni-ferrite phase was also on the rise, and the surface area of the powder was greatly reduced. As the inlet speed of solution increased from 2 cc/min. to 10 cc/min., the average particle size of the powder greatly increased, and the fraction of the Ni-ferrite phase was on the rise. As the inlet speed of solution increased to 100 cc/min., the average particle size of the powder decreased slightly and the distribution of the particle size appeared more irregular. Along with the increase of the inlet speed of solution more than 10 cc/min., the fraction of the Ni-ferrite phase was decreased. As the air pressure increased up to 1 $kg/cm^2, the average particle size of the powder and the fraction of the Ni-ferrite phase was almost constant. In case of 3 $kg/cm^2 air pressure, the average particle size of the powder and the fraction of the Ni-ferrite phase remarkably decreased.

분무열분해 공정에 의한 주석산화물 나노분체 제조에 미치공기압력의 영향 (Effects of Air Pressure on the Fabrication of Nano-Sized Tin Oxide Powder by Spray Pyrolysis Process)

  • 유재근;김동희
    • 한국재료학회지
    • /
    • 제21권12호
    • /
    • pp.690-696
    • /
    • 2011
  • In this study, nano-sized tin oxide powder with an average particle size of below 50 nm is prepared by the spray pyrolysis process. The influence of air pressure on the properties of the generated powder is examined. Along with the rise of air pressure from $0.1kg/cm^2$ to $3kg/cm^2$, the average size of the droplet-shaped particles decreases, while the particle size distribution becomes more regular. When the air pressure increases from $0.1kg/cm^2$ to $1kg/cm^2$, the average size of the dropletshaped particles, which is around 30-50 nm, shows hardly any change. When the air pressure increases up to $3kg/cm^2$, the average size of the droplet-shaped particles decreases to 30 nm. For the independent generated particles, when the air pressure is at $0.1kg/cm^2$, the average particle size is approximately 100 nm; when the air pressure increases up to $0.5kg/m^2$, the average particle size becomes more than 100 nm, and the surface structure becomes more compact; when the air pressure increases up to $1kg/cm^2$, the surface structure is almost the same as in the case of $0.5kg/cm^2$, and the average particle size is around 80- 100 nm; when the air pressure increases up to $3kg/cm^2$, the surface structure becomes incompact compared to the cases of other air pressures, and the average particle size is around 80-100 nm. Along with the rise of air pressure from $0.1kg/cm^2$ to $0.5kg/cm^2$, the XRD peak intensity slightly decreases, and the specific surface area increases. When the air pressure increases up to $1kg/cm^2$ and $3kg/cm^2$, the XRD peak intensity increases, while the specific surface area also increases.

분무열분해 공정의 제조 조건이 Ca8Mg(SiO4)4Cl2:Eu2+ 형광체 특성에 미치는 영향 (Effects of Preparation Conditions in the Spray Pyrolysis on the Characteristics of Ca8Mg(SiO4)4Cl2:Eu2+ Phosphor)

  • 한진만;구혜영;이상호;강윤찬
    • 한국재료학회지
    • /
    • 제18권2호
    • /
    • pp.92-97
    • /
    • 2008
  • In spray pyrolysis, the effects of the preparation temperature, flow rate of the carrier gas and concentration of the spray solution on characteristics such as the morphology, size, and emission intensity of $Ca_8Mg(SiO_4)_4Cl_2:Eu^{2+}$ phosphor powders under long-wavelength ultraviolet light were investigated. The phosphor powders obtained post-treatment had a range of micron sizes with regular morphologies. However, the composition, crystal structure and photoluminescence intensity of the phosphor powders were affected by the preparation conditions of the precursor powders. The $Ca_8Mg(SiO_4)_4Cl_2:Eu^{2+}$ phosphor powders prepared at temperatures that were lower and higher than $700^{\circ}C$ had low photoluminescence intensities due to deficiencies related to the of Cl component. The phosphor powders with the deficient Cl component had impurity peaks of $Ca_2SiO_4$. The optimum flow rates of the carrier gas in the preparation of the $Ca_8Mg(SiO_4)_4Cl_2:Eu^{2+}$ phosphor powders with high photoluminescence intensities and regular morphologies were between 40 and 60 l/minute. Phosphor powders prepared from a spray solution above 0.5 M had regular morphologies and high photoluminescence intensities.

Y2O3 세라믹스의 미세구조 및 플라즈마 저항성 (Microstructure and plasma resistance of Y2O3 ceramics)

  • 이현규;이석신;김비룡;박태언;윤영훈
    • 한국결정성장학회지
    • /
    • 제24권6호
    • /
    • pp.268-273
    • /
    • 2014
  • $Y_2O_3$ 세라믹 소결체를 제작하기 위해, $Y_2O_3$ 분말을 분산한 상태에서 슬러리에 pH 조절제인 NaOH를 첨가하였으며 결합제로는 PVA, 가소제로는 PEG를 첨가하여 열분무 건조 공정을 거쳐 $Y_2O_3$ 과립형 분말을 제조하였다. ${\phi}14mm$ 크기의 $Y_2O_3$ 세라믹 성형체를 성형하고, $1650^{\circ}C$의 온도에서 소결하여 $Y_2O_3$ 세라믹 소결체를 제작하였다. $Y_2O_3$ 소결체의 미세구조, 밀도 및 내플라즈마 특성이 성형압력 및 소결시간에 따라 분석되었다. $Y_2O_3$ 소결체는 $CHF_3/O_2/Ar$ 플라즈마에 노출시켜, $Ar^+$ 이온빔에 의한 물리적반응 식각과 $CHF_3$로부터 분해된, $F^-$ 이온에 의한 화학적반응 식각에 의한 건식 식각 처리가 이루어졌다. 본 연구에서 $Y_2O_3$ 소결체 소결시간의 증가에 따라, 비교적 높은 밀도를 나타내었으며, 내플라즈마 특성이 향상되는 것으로 나타났다.

단결정 실리콘 제조용 석영유리도가니의 결정화에 대한 연구 (Study on the crystallization of quartz glass crucibles for preparation of single crystal silicon)

  • 임종원;김태희;박경봉
    • 한국결정성장학회지
    • /
    • 제28권3호
    • /
    • pp.99-105
    • /
    • 2018
  • 본 연구에서는 단결정 실리콘 제조수율에 영향을 미치는 것으로 알려진 석영도가니 표면의 불균일한 결정화를 피하기 위해, 결정화촉진제로 Ba이 포함된 코팅용액을 제조하여 분무열분해법으로 코팅 후, 열처리에 따른 석영도가니 표면의 결정화를 조사하였고, 다음과 같은 결과를 얻었다. 코팅하지 않은 도가니의 경우 온도가 상승함에 따라 $1350^{\circ}C$에서부터 결정화가 진행되는 것을 알 수 있었으며, $1450^{\circ}C$가 되어서야 균일하게 결정화가 되는 것을 확인하였으며, 결정상은 ${\beta}$-cristobalite로 확인되었다. Ba이 코팅된 도가니는 $1000^{\circ}C$부터 결정화가 진행되고 $1300^{\circ}C$에서 전체적으로 도가니 표면에 균일하게 결정화가 진행되는 것을 알 수 있었다. Ba이 코팅된 도가니는 결정상으로 ${\alpha}$-cristobalite와 침상 결정의 $BaSi_2O_5$이 생성되었다가 소멸하며, ${\beta}$-cristobalite 상이 최종적으로 균일한 결정상으로 남는 것을 알 수 있다.

알루미늄이 첨가된 Li(Ni1/3Co1/3Mn1/3-xAlx)O2 양극활물질의 전기화학적 특성 (Electrochemical Properties of Al Doped Li(Ni1/3Co1/3Mn1/3-xAlx)O2, Cathode Materials)

  • 김선혜;심광보;김창삼
    • 전기화학회지
    • /
    • 제9권2호
    • /
    • pp.64-69
    • /
    • 2006
  • 초음파분무열분해법과 한 단계의 후열처리로 이차상이 없는 Al이 첨가된 $Li(Ni_{1/3}Co_{1/3}Mn_{1/3-x}Al_x)O_2$ (x=0.0, 0.005, 0.01. 0.05) 리튬이차전지용 양극활물질을 합성하였다. 합성된 분말은 Al의 첨가량이 많아짐에 따라서 $I_{003}/I_{104}$ 비는 감소하고 입자가 커지는 경향을 보였다. 상온에서 전류밀도 1C의 rate로 $3.0\sim4.5V$ 범위에서 충방전 시험한 결과, Al 치환량이 0.5와 1.0 at%에서는 초기용량이 180과 $184mAhg^{-1}$으로 치환하지 않았을 때의 $182mAhg^{-1}$과 차이가 없었으며, 싸이클 특성도 치환하지 않은 것과 0.5, 1.0 at% 치환한 조성에서 각각 81, 77, 81%의 방전용량이 유지되었다. 그러나 $3.0\sim4.6V$에서는 치환효과가 확실하게 나타나서, 50 싸이클 후의 치환하지 않은 것의 방전용량은 초기용량의 30%가지 감소한데 비하여 Al을 0.5 at% 치환한 것은 70%를 유지하였다. 치환에 의한 싸이클 특성 향상은 XPS 분석 결과 Al 치환이 $Mn^{3+}$의 양을 감소시켰기 때문인 것으로 사료되었다.