• 제목/요약/키워드: 분무 열분해

검색결과 130건 처리시간 0.023초

분무 열분해 CVD법으로 이동 중인 LaAlO_3(100) 단결정 위에 증착시킨 YBCO 박막의 특성 (Deposition of YBCO Films on Moving Substrate by a Spray Pyrolysis method)

  • 김재근;홍석관;김호진;유석구;조한우;안지현;주진호;이희균;홍계원
    • Progress in Superconductivity
    • /
    • 제8권1호
    • /
    • pp.93-97
    • /
    • 2006
  • YBCO films were deposited on a moving substrate by a spray pyrolysis method using nitrate aqueous solution as precursors. Deposition was made on $LaAlO_3$(100) single crystal substrate by spraying precursor droplets generated by a concentric nozzle. The cation ratio of precursor solution was Y:Ba:Cu=1:2.65:4.5. The distance between nozzle and substrate was 15 cm. Substrate was transported with a speed ranging from 0.23 cm/min to 0.5 cm/min. Films were deposited at the pressure ranging from 10 Torr to 20 Torr and the deposition temperature was ranged from $740^{\circ}C\;to\;790^{\circ}C$. Oxygen partial pressure was controlled between 1 Tow and S Torr. Superconducting YBCO films were obtained from $740^{\circ}C\;to\;790^{\circ}C$ with an oxygen partial pressure of 3 Torr. Scanning electron microscope(SEM) and X-ray diffraction(XRD) observation revealed that films are smooth and highly texture with(001) plans parallel to substrate plane. Highest Jc was 0.72 $MA/cm^2$ at 77K and self-field for the film with a thickness of 0.15 m prepared at a substrate temperature of $740^{\circ}C$ and $PO_2$=3 Torr.

  • PDF

초음파 분무 열분해 공정을 이용한 TiO2와 TiOF2 복합체 분말의 합성과 상 분율에 따른 광학적 성질 (Synthesis and Optical Properties of TiO2/TiOF2 Composite Powder with Controlled Phase Fractions via an Ultrasonic Spray Pyrolysis Process)

  • 황보영;박우영;이영인
    • 한국재료학회지
    • /
    • 제27권6호
    • /
    • pp.325-330
    • /
    • 2017
  • Photoelectron-hole separation efficiency plays an important role in the enhancement of the photocatalytic activity of photocatalysts towards the degradation of organic molecules. In this study, $TiO_2/TiOF_2$ heterostructured composite powders with suitable band structures, which structures are able to separate photoelectron-hole pairs, have been synthesized using a simple and versatile ultrasonic spray pyrolysis process. In addition, their phase volume fractions have been controlled by varying the pyrolysis temperature from $400^{\circ}C$ to $800^{\circ}C$. The structural and optical properties of the synthesized powders have been characterized by X-ray diffraction, scanning electronic microscopy and UV-vis spectroscopy. The powder with a phase volume ratio close to 1, compared with single $TiOF_2$ and other composite powders with different phase volume fractions, was found to have superior photocatalytic activity for the degradation of rhodamine B. This result shows that the $TiO_2/TiOF_2$ heterostructure promotes the separation of the photoinduced electrons and holes and that this powder can be applicable to environmental cleaning applications.

초음파 분무 열분해 증착 중 기판 회전 속도에 따른 플루오린 도핑 된 주석산화물 막의 전기적 및 광학적 특성 (Electrical and Optical Properties of Fluorine-Doped Tin Oxide Films Fabricated at Different Substrate Rotating Speeds during Ultrasonic Spray Pyrolysis Deposition)

  • 이기원;조명훈;안효진
    • 한국재료학회지
    • /
    • 제34권1호
    • /
    • pp.55-62
    • /
    • 2024
  • Fluorine-doped tin oxide (FTO) has been used as a representative transparent conductive oxide (TCO) in various optoelectronic applications, including light emitting diodes, solar cells, photo-detectors, and electrochromic devices. The FTO plays an important role in providing electron transfer between active layers and external circuits while maintaining high transmittance in the devices. Herein, we report the effects of substrate rotation speed on the electrical and optical properties of FTO films during ultrasonic spray pyrolysis deposition (USPD). The substrate rotation speeds were adjusted to 2, 6, 10, and 14 rpm. As the substrate rotation speed increased from 2 to 14 rpm, the FTO films exhibited different film morphologies, including crystallite size, surface roughness, crystal texture, and film thickness. This FTO film engineering can be attributed to the variable nucleation and growth behaviors of FTO crystallites according to substrate rotation speeds during USPD. Among the FTO films with different substrate rotation speeds, the FTO film fabricated at 6 rpm showed the best optimized TCO characteristics when considering both electrical (sheet resistance of 13.73 Ω/□) and optical (average transmittance of 86.76 % at 400~700 nm) properties with a figure of merit (0.018 Ω-1).

초음파 분무연소법에 의한 $LiNi_xMn_{2-x}O_4$ 분말의 전기적 특성 평가 (The evaluation of electrical properties for $LiNi_xMn_{2-x}O_4$ Nano powders by Ultra sonic pyrolysis)

  • 오효진;이남희;윤초롱;;남상철;박경순;이내성;김선재
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2006년도 영호남 합동 학술대회 및 춘계학술대회 논문집 센서 박막 기술교육
    • /
    • pp.113-116
    • /
    • 2006
  • 자발착화 연소반응법 (Glycine Nitrate Process)을 응용한 초음파분무열분해장치를 이용하여 이차전지의 양극재료인 Ni치환형 $LiMn_2O-4$ 분말을 합성하였고, 각각의 하소온도에 따른 분말의 특성을 평가하였다. 전구용액은 산화제로 $Mn(NO_3)_2{\cdot}6H_20$EX>, $LiNO_3$, $Ni(NO_3)_2{\cdot}6H_20$를 사용하였고, 자발착화 에너지를 공급하기 위한 연료로는 glycine를 사용하였다. 분말의 결정상을 확인하기 위해 X-선 회절 시험을 시행하였으며, 각각의 조성별로 ICP측정결과 여러 조성들($LiNi_xNm_{2-x}O_4\;0{\leq}x{\leq]0.5$) 중 $LiNi_{0.3}Nm_{1.7}O_4$의 분말이 비교적 우수한 특성을 나타내었지만, 전기화학적 특성 평가 결과 이론용량값에 미치지 못하는 용량값을 나타내었다. 이것은 분말 합성 시 미량의 미 반응된 유기물들이 분말 표면에 피복되어 전기적 성질을 변화시키고 있기 때문임을 확인하였다. 이러한 특성을 개선하고자 추가적으로 하소 공정을 실시하여 전지의 성능를 평가 하였다. 분말의 미세구조와 형태, 크기, 전기 화학적 특성을 관찰하여 하소 전 후의 분말을 비교하였다.

  • PDF

급속열분해를 통하여 생산된 바이오오일 액적의 증발 특성에 관한 수치해석적 연구 (Numerical Study on the Evaporation Characteristics of Biocrude-oil Produced by Fast Pyrolysis)

  • 최상규;최연석;김석준;한소영
    • 공업화학
    • /
    • 제27권6호
    • /
    • pp.646-652
    • /
    • 2016
  • 바이오매스는 최근 화석연료의 고갈 및 지구온난화 등의 문제에 대응하기 위한 신재생에너지원으로 많은 관심을 받고 있다. 바이오오일은 폐목재, 농업 및 임업 부산물 등의 바이오매스로부터 급속열분해 과정을 통하여 생산되는 액체연료이다. 바이오오일은 일반적인 석유 계통의 연료에 비하여 점도가 매우 높고 고체상의 불순물을 포함하고 있어 버너 적용시 스프레이 분무 특성이 저하된다. 또한, 바이오오일은 셀룰로오스, 헤미셀룰로오스, 리그닌으로부터 유래되는 수백 종류의 화학종들로 이루어져 있어 일반적인 액체연료와는 액적의 증발 특성이 뚜렷하게 구분된다. 본 연구에서는, 바이오오일의 구성 성분을 아세트산, 레보글루코산, 페놀, 수분으로 단순화하여 액적의 증발 특성에 관한 수치해석적 연구를 수행하였다. 다양한 주위공기 온도, 액적의 초기 지름, 에탄올 혼합 비율에 대하여 액적의 증발 특성을 비교하였다. 주위공기 온도가 높아질수록 바이오오일 액적의 증발 시간은 짧아졌으며, 특히 낮은 온도 범위에서는 증발 시간이 공기온도에 매우 민감하였다. 또한 액적의 지름이 감소할수록, 에탄올 혼합 비율이 증가할수록 증발 시간이 단축됨을 알 수 있었다.

분무열분해 공정에 의해 합성되어진 나노 크기 Gd2O3:Eu형광체 (Nano-sized Gd2O3:Eu Phosphor Prepared by Spray Pyrolysis)

  • 김은정;강윤찬;박희동;유승곤
    • 한국재료학회지
    • /
    • 제12권10호
    • /
    • pp.771-775
    • /
    • 2002
  • $Gd_2$$O_3$:Eu phosphor particles with nano-sized and non-aggregation characteristics were prepared by spray pyrolysis using the spray solution containing polymeric precursor and $Li_2$$CO_3$ flux material. Nano-sized $Gd_2$$O_3$:Eu phosphor particles had higher brightness than the commercial $Y_2$$O_3$:Eu phosphor particles. The $Gd_2$$O_3$:Eu phosphor particles had nano-size and non-aggregation characteristics after heat-treatment at $1000^{\circ}C$ when the addition amount of $Li_2$$CO_3$ flux was 1 wt.% and 3 wt.%. The mean size of particles were 200 nm and 400 nm when the amount of flux was 1 wt.% and 3 wt.%, respectively. The prepared phosphor particles had higher photoluminescence intensity than that of the commercial product regardless of the content of$ Li_2$$CO_3$ flux and had the maximum brightness when the content of flux was 5 wt %. The photoluminescence intensity of the nano-sized $Gd_2$$O_3$:Eu phosphor particles containing 3 wt.% $Li_2$$CO_3$ flux was 125% in comparison with that of the micron-sized $Y_2$$O_3$:Eu commercial product.

분무열분해공정 하에서 합성 조건이 열원 소재로서의 Fe 분말 특성에 미치는 영향 (Effect of Preparation Conditions on the Characteristics of Fe Powders Prepared by Spray Pyrolysis as Heat Source Material)

  • 구혜영;김정현;홍승권;한진만;고유나;이수민;고다래;강윤찬;강승호;조성백
    • 한국재료학회지
    • /
    • 제19권11호
    • /
    • pp.581-587
    • /
    • 2009
  • Fe powders with elongated and aggregated structure as heat pellet material for thermal battery applications were prepared by spray pyrolysis under various preparation conditions. The precursor powders with spherical shapes and hollow morphologies turned into Fe powders after reduction at a temperature of 615$^{\circ}C$ under 20% $H_2$/Ar gas. The powders had pure Fe crystal structures irrespective of the preparation conditions of the precursor powders in the spray pyrolysis. The morphologies and mean sizes of the Fe powders are affected by the preparation conditions of the precursor powders in the spray pyrolysis. Therefore, the ignition sensitivities and the burn rates of the heat pellets formed from the Fe powders prepared by spray pyrolysis are affected by the preparations of the precursor powders. The Fe powders prepared under the optimum preparation conditions have a BET surface area of 2.9 $m^2g^1$. The heat pellets prepared from the Fe powders with elongated and aggregated structure have a good ignition sensitivity of 1.1W and a high burn rate of 18 $cms^1$.

초음파 분무 열 분해법을 통해 제조된 불소 도핑 된 주석 산화물 나노 입자의 전기화학적 특성 (Electrochemical Properties of Fluorine-Doped Tin Oxide Nanoparticles Using Ultrasonic Spray Pyrolysis)

  • 이도영;이정욱;안건형;류도형;안효진
    • 한국재료학회지
    • /
    • 제26권5호
    • /
    • pp.258-265
    • /
    • 2016
  • Fluorine-doped tin oxide (FTO) nanoparticles have been successfully synthesized using ultrasonic spray pyrolysis. The morphologies, crystal structures, chemical bonding states, and electrochemical properties of the nanoparticles are investigated. The FTO nanoparticles show uniform morphology and size distribution in the range of 6-10 nm. The FTO nanoparticles exhibit excellent electrochemical performance with high discharge specific capacity and good cycling stability ($620mAhg^{-1}$ capacity retention up to 50 cycles), as well as excellent high-rate performance ($250mAhg^{-1}$ at $700mAg^{-1}$) compared to that of commercial $SnO_2$. The improved electrochemical performance can be explained by two main effects. First, the excellent cycling stability with high discharge capacity is attributed to the nano-sized FTO particles, which are related to the increased electrochemical active area between the electrode and electrolyte. Second, the superb high-rate performance and the excellent cycling stability are ascribed to the increased electrical conductivity, which results from the introduction of fluorine doping in $SnO_2$. This noble electrode structure can provide powerful potential anode materials for high-performance lithiumion batteries.

용매와 반송가스가 초음파 분무 열분해에 의한 불소 도핑 이산화 주석 투명전도막의 성장속도와 특성에 미치는 영향 (The Effect of Solvent and Carrier Gas on the Deposition Rate aid the Properties of Pyrosol Deposited $SnO_2$ : F Transparent Conducting Films)

  • 윤경훈;송진수;강기환
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1991년도 하계학술대회 논문집
    • /
    • pp.174-177
    • /
    • 1991
  • Fluorine-doped $SnO_2\;(SnO_2:F)$ films were prepared in ordinary atmosphere on borosilicate glass substrates using pyrosol deposition method starting from the solutions composed of $SnCl_4-5H_2O-NH_4F-CH_3OH-H_2O-HCl$ in an attempt to develop transparent conductors for use in amorphous silicon (a-Si) solar cello. The deposition rate of films increased with the increase in the content of $H_2O$, whereas it decreased with increasing the content of $CH_3OH$. When air was used as the carrier gas, the lowest electrical resistivity was obtained from a solution having $CH_3OH/H_2O$ mol ratio of about $2{\sim}3$ in the solution. The use of $N_2$ of the same flow rate as the carrier gab resulted always in the high resistive films, but the resistivity of the films decreased continuously with the increase in the content of $H_2O$. The surface morphology and preferred orientation of films were also affected by the solvent composition and the content of HCl in the solution. The room-temperature resistance of the films were fairly stable after heat-treatments up to $600^{\circ}C$.

  • PDF

분무열분해 공정에서 붕소 농도에 따른 Gd2O3:Eu 형광체의 GdBO3:Eu 형광체로의 전환 (Transition of Gd2O3:Eu Phosphor to GdBO3:Eu Phosphor with Boron Concentration in the Spray Pyrolysis)

  • 구혜영;정대수;주서희;홍승권;강윤찬
    • 한국재료학회지
    • /
    • 제16권3호
    • /
    • pp.163-167
    • /
    • 2006
  • The transition of europium-doped gadolinium oxide phosphor to gadolinium borate phosphor with the concentration of boron in the spray pyrolysis was investigated. The particles prepared from spray solution below 10 wt% boric acid of prepared phosphor had crystal structure of $Gd_2O_3:Eu$ phosphor, in which the crystallinity of the particles decreased with increasing the boron concentration. A single phase $GdBO_3:Eu$ phosphor particles were prepared from spray solution above 50 wt% boric acid of prepared phosphor. The phosphor particles prepared from spray solution with 20 wt% boric acid of prepared phosphor had no XRD peaks of $Gd_2O_3:Eu$ and $GdBO_3:Eu$ Therefore the phosphor particles prepared from spray solution with 20 wt% boric acid of prepared phosphor had the lowest photoluminescence intensity under ultraviolet and vacuum ultraviolet. $GdBO_3:Eu$ and $Gd_2O_3:Eu$ phosphor particles prepared from spray solutions with proper concentrations of boric acid had good photoluminescence intensity under vacuum ultraviolet. The morphology of the phosphor particles were strongly affected by the concentrations of boric acid added into spray solution.