• Title/Summary/Keyword: 분무시스템

Search Result 246, Processing Time 0.029 seconds

Corrosion Protection of Steel by Applying a Zn-Sn Metal Spray System (Zn-Sn 합금을 이용한 강구조물의 금속용사공법 방식성능평가 연구)

  • Ryu, Hwa-Sung;Jeong, Dong-Geun;Lee, Han-Seung
    • Journal of the Korea Institute of Building Construction
    • /
    • v.14 no.6
    • /
    • pp.505-513
    • /
    • 2014
  • The purpose of this study is to evaluate the corrosion protective properties of a Zn-Sn metal spray method according to the contents of Zn and Sn by a CASS test and the electrochemical theory. In the experiment, the CASS test and the electrochemical test were conducted to investigate the corrosion protective property of the Zn-Sn Metal Spray system, the Zinc galvanizing system, and the heavy duty coating system. As a result, it was confirmed that the Zn-Sn (65:35) Metal Spray system had very high corrosion protective property through the electrochemical characteristic as comparison with the other anti-corrosion systems and was very effective to prevent steel products from corrosion.

Effect of Injection Rate and Gas Density on Ambient Gas Entrainment of Non-evaporating Transient Diesel Spray from Common-Rail Injection System (커먼레일시스템의 비증발 디젤 분무에서 분사율과 주변기체의 밀도에 따른 주변기체 유입)

  • Kong, Jang-Sik;Choi, Wook;Bae, Choong-Sik;Kang, Jin-Suk
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.5
    • /
    • pp.19-24
    • /
    • 2004
  • Entrainment of ambient gas into a transient diesel spray is a crucial factor affecting the following preparation of combustible mixture. In this study, the entrainment characteristics of ambient gas for a non-evaporating transient diesel were investigated using a common-rail injection system. The effects of ambient gas density and nozzle hole geometry were assessed with entrainment coefficient. Laser Doppler Velocimetry (LDV) technique was introduced to measure the entrainment speed of ambient gas into a spray. There appeared a region where the entrainment coefficients remained almost constant while injection rates were still changing. The effect of common-rail pressure, which altered the slope of injection rate curve, was hardly noticed at this region. Entrainment coefficient increased with ambient gas density, that is, the effect of ambient gas density was greater than that of turbulent jet whose entrainment coefficient remained constant. The non-dimensional distance was defined to reflect the effect of nozzle hole diameter and ambient gas density together. The mean value of entrainment coefficient was found to increase with non-dimensional distance from the nozzle tip, which would be suggested as the guideline for the nozzle design.

The Experimental Study on the Lift-off Height due to Momentum Ratio in Swirl-Coaxial Injector (2유체 동축인젝터의 공급 운동량비가 화염부상거리에 미치는 영향에 관한 실험적 연구)

  • Moon, I.Y.;Kim, Y.;Park, H.H.;Kim, S.J.
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.4 no.1
    • /
    • pp.30-35
    • /
    • 2000
  • The experimental study on the lift-off height of diffusion flames was conducted to investigate the damage of swirl-coaxial injector used in $GO_2$/kerosene rocket engine during initial stage of ignition. To investigate the causes of damage and to prevent further damage of the injector, experimental injector was designed and hot fire tests were performed with varying propellant momentum ratio($\frac{Momentum of {GO_2}}{Momentum of Kerosene}$) from 1 to 12. In experimental coaxial injector, kerosene is sprayed from the central nozzle with swirl and $GO_2$ sprayed around the kerosene nozzle in the direction parallel to the axis of combustion chamber. Chamber pressure are close to the atmospheric condition. Lift-off height was measured by still images from camcoder and average values were used as data.

  • PDF

Circuit Modeling and Simulation for Thermoelectric Cooling System using Condensed Water (응축수를 활용한 열전 냉각장치의 회로 모델링 및 시뮬레이션)

  • Lee, Sang-Yun;Jang, Sukyoon;Park, Mignon;Yoon, Changyong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.25 no.2
    • /
    • pp.161-167
    • /
    • 2015
  • In this paper, a novel thermoelectric cooling system utilizing condensed water is introduced and its electrical equivalent circuit model is proposed. The introduced system can deals with the condensed water and improves efficiency by spraying the condensed water on heat sink. The electrical equivalent circuit model is derived by combining the circuit model of the classical thermoelectric cooling system with equation of heat exchange. Because the parameters of the model can be defined from not other experimental data but just the data sheet of the thermoelement, the model can be useful to design and develop the controller of the proposed system. We verify that the proposed model is valid and the introduced system is more efficient than the previous thermoelectric cooling system through simulations.

Improvement of Cooling Efficiency in Greenhouse Fog System Using the Dehumidifier (제습기를 이용한 온실 포그냉방시스템의 효율향상)

  • Nam Sang Woon;Kim Kee Sung;Giacomelli Gene A.
    • Journal of Bio-Environment Control
    • /
    • v.14 no.1
    • /
    • pp.29-37
    • /
    • 2005
  • In order to provide fundamental data on utilization of dehumidifier in greenhouses, a condensing type dehumidifier using ground water as a coolant was developed and tested dehumidification performance. The developed dehumidifier was applied to greenhouse with fog cooling system and effect of dehumidification on improvement of evaporative cooling efficiency was analyzed. Results of the dehumidifier performance test showed that dehumidification using ground water as a coolant was sufficiently possible in fog cooling greenhouse. When the set point temperature of greenhouse cooling was $32^{\circ}C$ and as temperatures of ground water rose from $15^{\circ}C\;to\;18^{\circ}C,\;21^{\circ}C\;and\;24^{\circ}C$, dehumidification rates decreased by $17.7\%,\;35.4\%\;and\;52.8\%$, respectively. As flow rates of ground water reduced to $75\%\;and\;50\%$, dehumidification rates decreased by $12.1\%\;and\;30.5\%$, respectively. Cooling efficiency of greenhouse equipped with fog system was distinctly improved by artificial dehumidification. When the ventilation rate was 0.7 air exchanges per minute, dehumidification rates of the fog cooling greenhouse caused by natural ventilation were 53.9%-74.4% and they rose up to 75.4%-95.9% by operating the dehumidifier. In case of using the ground water of $18^{\circ}C$ and flow rate of design condition, it was analyzed that whole fog spraying water can be dehumidified even if the ventilation rate is 0.36 exchanges per minute. As a utilization of dehumidifier, it is possible to improve cooling efficiency of fog system in naturally ventilated greenhouses.

Development of Fog Cooling Control System and Cooling Effect in Greenhouse (온실 포그 냉방 제어시스템 개발 및 냉방효과)

  • Park, Seok Ho;Moon, Jong Pil;Kim, Jin Koo;Kim, Seoung Hee
    • Journal of Bio-Environment Control
    • /
    • v.29 no.3
    • /
    • pp.265-276
    • /
    • 2020
  • This study was conducted to provide a basis for raising farm income by increasing the yield and extending the cultivation period by creating an environment where crops can be cultivated normally during high temperatures in summer. The maximum cooling load of the multi-span greenhouse with a floor area of 504 ㎡ was found to be 462,609 W, and keeping the greenhouse under 32℃ without shading the greenhouse at a high temperature, it was necessary to fog spray 471.6 L of water per hour. The automatic fog cooling control device was developed to effectively control the fog device, the flow fan, and the light blocking device constituting the fog cooling system. The fog cooling system showed that the temperature of the greenhouse could be lowered by 6℃ than the outside temperature. The relative humidity of the fog-cooled greenhouse was 40-80% during the day, about 20% higher than that of the control greenhouse, and this increase in relative humidity contributed to the growth of cucumbers. The relative humidity of the fog cooling greenhouse during the day was 40-80%, which was about 20% higher than that of the control greenhouse, and this increase in relative humidity contributed to the growth of cucumbers. The yield of cucumbers in the fog-cooled greenhouse was 1.8 times higher in the single-span greenhouse and two times higher in the multi-span greenhouse compared to the control greenhouse.

Development of Solid Self-nanoemulsifying Drug Delivery Systems of Ticagrelor Using Porous Carriers (다공성의 캐리어를 이용한 티카그렐러 함유 고형의 자가 나노유화 약물전달시스템 개발)

  • Choi, Hyung Joo;Kim, Kyeong Soo
    • Journal of Life Science
    • /
    • v.31 no.5
    • /
    • pp.502-510
    • /
    • 2021
  • The objective of this study was to develop a novel ticagrelor-loaded self-nanoemulsifying drug delivery system with an enhanced solubility and dissolution rate. Numerous oils and surfactants were screened, then medium chain triglyceride (MCT) oil and the surfactants polyoxyethylene sorbitan monooleate (Tween 80) and Labrafil M1944CS were selected for the preparation of the ticagrelor-loaded self-nanoemulsifying drug delivery system. A pseudo-ternary phase diagram was constructed to detect the nanoemulsion region. Of the various formulations tested, the liquid SNEDDS, composed of MCT (oil), Tween 80 (surfactant), and Labrafil M1944CS (cosurfactant) at a weight ratio of 20/70/10 produced the smallest emulsion droplet size (around 20.56±0.70 nm). Then, particle size, polydispersity, and zeta potential were measured using drugs containing liquid SNEDDS. The selected ticagrelor-loaded liquid SNEDDS was spray-dried to convert it into a ticagrelor-loaded solid SNEDDS with a suitable inert carrier, such as silicon dioxide, calcium silicate, or magnesium aluminometasilicate. The solid SNEDDS was characterized by scanning electron microscopy, transmission electron microscopy, and in vitro dissolution studies. SEM, PXRD, and DSC results suggested that amorphous ticagrelor was present in the solid SNEDDS. Also, the solid SNEDDS significantly increased the dissolution rate of ticagrelor. In particular, the emulsion particle size and the polydispersity index of the solid SNEDDS using silicon dioxide (SS1) as a carrier was the smallest among the evaluated solid SNEDDS, and the flowability and compressibility result of the SS1 was the most suitable for the manufacturing of solid dosage forms. Therefore, solid SNEDDS using silicon dioxide (SS1) could be a potential nano-sized drug delivery system for the poorly water-soluble drug ticagrelor.

Development of 0D Multizone Combustion Model and Its Coupling with 1D Cycle-Simulation Model for Medium-Sized Direct-Injection Diesel Engine (중형 직분식 디젤 엔진의 0-D Multi-zone 연소 모델 및 1-D Cycle Simulation 연계 기법 개발)

  • Choi, Seung-Mok;Min, Kyoung-Doug;Kim, Ki-Doo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.6
    • /
    • pp.615-622
    • /
    • 2010
  • In this study, a 0D multizone spray-combustion model is developed for the estimation of the performance and NOx emission of medium-sized direct-injection marine diesel engine. The developed combustion model is coupled with the commercial 1D cycle-simulation model, Boost, to analyze the entire engine system, including the intake and exhaust. The combustion model code was generated using Fortran90, and the model was coupled with Boost by connecting the generated code to a user-defined high-pressure cycle (UDHPC) interface. Simulation was performed for two injectors (8 holes and 10 holes) and two engine loads (50% and 100%), and the results of simulation were in good agreement with engine performance test.

COMPUTATIONAL SIMULATION OF FIRE SUPPRESSION SYSTEM FOR CABINS OF SHIPBOARD ENCLOSURE (선박 거주구역용 소화시스템의 전산 시뮬레이션)

  • Jung, I.S.;Chung, H.T.;Han, Y.S.
    • Journal of computational fluids engineering
    • /
    • v.21 no.4
    • /
    • pp.40-45
    • /
    • 2016
  • The numerical simulation has been performed to predict the performance of the fire suppression system for cabin of shipboard enclosure. The present study aims ultimately at finding the optimal parametric conditions of the mist-injecting nozzles using the CFD methods. The open numerical code was used for the present simulation named as FDS (Fire Dynamics Simulator). Application has been done to predict the interaction between water mist and fire plume. In this study, the passenger cabin was chosen as simulation space. The computational domains for simulation in the passenger cabin were determined following the fire scenario of IMO rules. The full scale of the flow field is $W{\times}L{\times}H=4{\times}3{\times}2.4m^3$ with a dead zone of $W{\times}L{\times}H=1.22{\times}1.1{\times}2.4m^3$. The water mist nozzle is installed in ceiling center of 2.3 m height from the floor, and there are six mattresses and four cushions in the simulation space. The combination patterns of orifices to the main nozzle and the position to install nozzles were chosen as the simulation parameters for design applications. From the present numerical results, the centered-located nozzles having evenly combined orifices were shown as the best performance of fire suppression.

Improvement of Deposition Performance of Ultrasonic Spray Pyrolysis Deposition System through Atomizer Shape Modification (분무장치 형상 변경을 통한 초음파 열분해 증착 시스템의 증착 성능 개선)

  • Kim, Kyu-Eon;Lee, Jae-Hoo;Jeon, Jae-Keon;Park, Sung-Hwan;Lee, Chibum
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.4
    • /
    • pp.469-474
    • /
    • 2015
  • In ultrasonic spray pyrolysis deposition, a precursor solution is evaporated by an ultrasonic atomizer, then gas-carried into a furnace where the solute is separated from the water vapor. After condensation, polymerization, and nucleation, the solute oxide forms a thin film. To improve the deposition efficiency, the ultrasonic atomizer was studied to optimize the evaporated gas flow. The vat cover was redesigned, using three versions with different inlet factors being tested through a computational fluid dynamic analysis as well as a water evaporation experiment. The atomization rate with a hemispherical cover with a $30^{\circ}$ inlet was found to be 2.4 times higher than that with the original. This improvement was verified with fluorine-doped tin oxide spray pyrolysis deposition. The film obtained with the modified vat cover was 2.4 times thicker than that obtained with the original vat cover.